

Order this document
 by TPUPN16/D

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

Input Capture/Input Transition Counter TPU
Function (ITC)
by Sharon Darley

1 Functional Overview
The ITC function can detect rising or falling input transitions. When a transition is detected, the current
TCR timer value is captured. The channel continues to detect and count input transitions until it has
counted the maximum programmable number stored in the parameter MAX_COUNT. The ITC function
can count the programmed maximum number of transitions continually, or it can count the programmed
number of transitions once, ceasing channel activity until reinitialization. Once the programmed maxi-
mum number of transitions is counted, the TPU can request an interrupt from the CPU and generate a
link to a sequential block of up to eight channels. (A link causes another channel or group of channels
to request service.) The user specifies the starting channel of the block and the number of channels
within the block.

2 Detailed Description
Input Capture

Any channel of the TPU can perform an input capture. Performing an input capture means recording
the value of the selected TCR of an input transition. If only one input capture is desired, then the
value in MAX_COUNT should be set to zero or one.

Input Transition Counter
Any channel of the TPU can count several input captures as specified by the parameter
MAX_COUNT.

The TPU services each input capture by saving the transition time to the parameter
LAST_TRANS_TIME and then incrementing the number of counts stored in TRANS_COUNT. When
the number of counts in TRANS_COUNT is equal to or greater than the value in MAX_COUNT, the TPU
stores the TCR value into the parameter FINAL_TRANS_TIME and requests an interrupt from the CPU.
It also increments the high byte of the memory location pointed to by the parameter BANK_ADDRESS.
This feature is intended for use with the PMA/PMM functions in engine control applications. Typically,
the ITC parameter BANK_ADDRESS points to the PMM/PMA parameter BANK_SIGNAL. If this feature
is not desired, BANK_ADDRESS must point to an unimplemented address of the TPU parameter RAM,
such as $0E.

Depending on the state of the host sequence field bits, the TPU can operate in one of four modes.
These four modes are described in detail in the following paragraphs.

2.1 Single Shot Without Links

In this mode, the TPU counts the number of transitions specified in MAX_COUNT, requests an interrupt,
and increments the high byte of the memory location pointed to by BANK_ADDRESS. Channel activity
then ceases until reinitialization.
© MOTOROLA INC, 1997

2.2 Continual Without Links

In this mode, the TPU counts the programmed number of transitions specified in MAX_COUNT, re-
quests an interrupt, and increments the high byte of the memory location pointed to by
BANK_ADDRESS. TRANS_COUNT is cleared to zero. The channel continues to count transitions.

2.3 Single Shot With Links

In this mode, the TPU counts the programmed number of transitions specified in MAX_COUNT, re-
quests an interrupt, and increments the high byte of the memory location pointed to by
BANK_ADDRESS. In addition, a link service request is generated to a sequential block of up to eight
channels. The user specifies the starting channel of the block in START_LINK_CHANNEL and the num-
ber of channels within the block in LINK_CHANNEL_COUNT. The TPU ignores all subsequent transi-
tions until the channel has been reinitialized.

2.4 Continual With Links

In this mode, each time the TPU counts the programmed number of transitions specified in
MAX_COUNT, it requests an interrupt and increments the byte pointed to by BANK_ADDRESS. It also
generates a link to a sequential block of up to eight channels. The user specifies the starting channel
of the block (in START_LINK_CHANNEL) and the number of channels within the block (in
LINK_CHANNEL_COUNT). Finally, the TPU clears the value in TRANS_COUNT to zero and continues
to count transitions.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. ITC function code size is:

27 µ instructions + 6 entries = 33 long words
 MOTOROLA TPU Programming Library
2 TPUPN16/D

4 Function Parameters
This section provides detailed descriptions of input transition counter function parameters stored in
channel parameter RAM. Figure 1 shows TPU parameter RAM address mapping. Figure 2 shows the
parameter RAM assignment used by the ITC function. In the diagrams, Y = M111, where M is the value
of the module mapping bit (MM) in the system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 1 TPU Channel Parameter RAM CPU Address Map

W = Channel number

Figure 2 ITC Function Parameter RAM Assignment

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 START_LINK_
CHANNEL

LINK_CHANNEL_C
OUNT

BANK_ADDRESS 0

$YFFFW4 MAX_COUNT

$YFFFW6 TRANS_COUNT

$YFFFW8 FINAL_TRANS_TIME

$YFFFWA LAST_TRANS_TIME

Parameter Write Access:

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
TPU Programming Library MOTOROLA
TPUPN16/D 3

4.1 CHANNEL_CONTROL

CHANNEL_CONTROL contains the channel latch controls and configures the PSC, PAC, and TBS
fields. The channel executing this function is configured as input, and CHANNEL_CONTROL must be
written by the CPU before initialization. The PSC field is “don't care” for input channels. The PAC field
specifies which type of transitions to detect: low-to-high, high-to-low, any, or no transitions. The TBS
field configures a channel pin as an input and specifies which time base (TCR1 or TCR2) to use. The
following table defines the allowable data for this parameter.

4.2 START_LINK_CHANNEL

START_LINK_CHANNEL contains the first channel of the link block. This parameter is written by the
host CPU at initialization.

4.3 LINK_CHANNEL_COUNT

LINK_CHANNEL_COUNT determines the number of channels in the link block. This parameter is writ-
ten by the host CPU at initialization and can be changed at any time.

NOTE
If this parameter is used, it must be greater than zero and less than or equal to
eight: 0 < count ≤ 8. No check is performed by the TPU. If this number is out of
range, the results are unpredictable.

Example: If START_LINK_CHANNEL = $F and LINK_CHANNEL_COUNT = 4, a
link is generated, in order of appearance, to channels 15, 0, 1, and 2.

4.4 BANK_ADDRESS

BANK_ADDRESS contains the address of a TPU parameter RAM location. The high byte of the RAM
location pointed to by this parameter is incremented when a programmable number of specified transi-
tions occur. If this increment is not desired, BANK_ADDRESS should point to an unused TPU param-
eter RAM location such as $0E. This way, the unused memory location will be incremented instead of
one that might affect program operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

Table 1 ITC CHANNEL_CONTROL Options

TBS PAC PSC ACTION

8 7 6 5 4 3 2 1 0

1 1 —

0 0 0 Do Not Detect Transition

0 0 1 Detect Rising Edge

0 1 0 Detect Falling Edge

0 1 1 Detect Either Edge

1 x x Do Not Change PAC

0 0 x x Input Channel

0 0 0 x Capture TCR1

0 0 1 x Capture TCR2
 MOTOROLA TPU Programming Library
4 TPUPN16/D

4.5 MAX_COUNT

MAX_COUNT specifies the number of transitions to be counted before an interrupt is requested and
the high byte of the memory location pointed to by BANK_ADDRESS is incremented. In continuous
mode, when MAX_COUNT is reached, TRANS_COUNT is reset to zero, and the TPU continues to
count. In single-shot mode, when MAX_COUNT is reached, the TPU ignores all further input transitions.
The CPU can update this parameter.

NOTE
TRANS_COUNT and MAX_COUNT should be accessed coherently by the CPU,
which may change MAX_COUNT and TRANS_COUNT at any time. (Altering
TRANS_COUNT by the CPU is not recommended unless the system designer can
ascertain that sufficient time remains before the TPU updates TRANS_COUNT.)
Refer to 6 Function Configuration for MAX_COUNT and TRANS_COUNT alter-
ation.

4.6 TRANS_COUNT

TRANS_COUNT contains the current number of transitions counted. The TPU increments this param-
eter when a programmed transition is detected. When the ITC function is operating in continuous mode,
TRANS_COUNT is reset to zero at the start of every series of transitions counted. The CPU can also
update this parameter.

NOTE
In continuous mode, the TPU may overwrite the value written by the host CPU, i.e.,
the CPU may have written a new value just before the TPU was about to reset this
parameter to zero. In this case, the CPU (via software interrogation) must ensure
that sufficient time remains to complete the update.

TRANS_COUNT and MAX_COUNT should be accessed coherently by the host
CPU, which may change MAX_COUNT and TRANS_COUNT at any time. (Altering
TRANS_COUNT by the CPU is not recommended unless the system designer can
ascertain that sufficient time remains before the TPU updates TRANS_COUNT.)
Refer to 6 Function Configuration for MAX_COUNT and TRANS_COUNT alter-
ation.

4.7 FINAL_TRANS_TIME

FINAL_TRANS_TIME contains the TCR time of the final transition when MAX_COUNT is reached. This
parameter is updated by the TPU when the number of transitions counted is equal to or greater than
MAX_COUNT. An interrupt is requested when FINAL_TRANS_TIME is updated.

4.8 LAST_TRANS_TIME

LAST_TRANS_TIME contains the TCR value of the previous transition. The TPU updates this param-
eter whenever the specified transition occurs and the number of transitions counted is less than
MAX_COUNT.

5 Host Interface to Function
This section provides information concerning the TPU host interface to the ITC function. Figure 3 is a
TPU address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where
M is the value of the module mapping bit (MM) in the system integration module configuration register
(Y = $7 or $F).
TPU Programming Library MOTOROLA
TPUPN16/D 5

Figure 3 TPU Address Map

CFS[4:0] — Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
 MOTOROLA TPU Programming Library
6 TPUPN16/D

6 Function Configuration
The CPU initializes the function by the following:

1. Writing CHANNEL_CONTROL, MAX_COUNT, and BANK_ADDRESS to parameter RAM;
2. Writing START_LINK_CHANNEL and LINK_CHANNEL_COUNT to parameter RAM if running

in link mode (host sequence bits = 1x);
3. Writing host sequence bits according to the mode of operation;
4. Issuing an HSR %01 for initialization; and
5. Enabling channel servicing by assigning a high, middle, or low priority.

The TPU executes initialization and starts counting the transition type specified by the PAC field in
CHANNEL_CONTROL. The CPU should monitor the HSR register until the TPU clears the service re-
quest to %00 before changing any parameters or issuing a new service request to this channel.

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Action Taken

00 Single shot, no links

01 Continual, no links

10 Single shot, links

11 Continual, links

HSRR[0:1] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Action

01 Initialization

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted
TPU Programming Library MOTOROLA
TPUPN16/D 7

6.1 MAX_COUNT and TRANS_COUNT Alteration

If the CPU changes MAX_COUNT, the TPU uses the new value on the next transition detected. Be-
cause TRANS_COUNT can be written by both the CPU and the TPU, one of the following cases can
occur if the CPU alters the TRANS_COUNT value:

A. The TPU uses the new value of (TRANS_COUNT plus one). This case is the most probable
and happens when:
1. The CPU writes a new value to TRANS_COUNT;
2. The TPU increments TRANS_COUNT; and
3. The TPU reads TRANS_COUNT and MAX_COUNT to compare them.

B. The TPU uses the new value of TRANS_COUNT. This case happens when:
1. The TPU increments TRANS_COUNT;
2. The CPU writes a new value to TRANS_COUNT; and
3. The TPU reads TRANS_COUNT and MAX_COUNT to compare them.

C. The new value of TRANS_COUNT is overwritten by the TPU. This case occurs when the CPU
writes a new value to TRANS_COUNT just as TRANS_COUNT equals the value of
MAX_COUNT (in continuous mode only). This case, which should be handled according to the
specific application, happens when:
1. The TPU increments TRANS_COUNT;
2. The TPU reads TRANS_COUNT and MAX_COUNT to compare them, and

TRANS_COUNT ≥ MAX_COUNT;
3. The CPU writes a new value to TRANS_COUNT; and
4. The TPU resets TRANS_COUNT to zero to initialize a new series of counts (in continuous

mode).

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, ITC function performance in an application is to some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. The more TPU channels are active, the more performance decreases. Worst-case latency
in any TPU application can be closely estimated. To analyze the performance of an application that ap-
pears to approach the limits of the TPU, use the guidelines given in the TPU reference manual and the
information in the ITC state timing table below.

NOTES
1. Assumes no channels linked. Add two clocks for each channel linked.

7.2 Changing Mode

The host sequence bits are used to select the ITC function operating mode. Change host sequence bit
values only when the function is stopped or disabled (channel priority bits = %00). Disabling the channel
before changing mode avoids conditions that cause indeterminate operation.

Table 2 ITC State Timing

State Number and Name Max CPU Clock Cycles RAM Accesses by TPU

S1 Init 18 4

S2 Count_Up (last count)
HSB = 00
HSB = 01
HSB = 10
HSB = 11

All modes (not last count)

30
36

341

401

16

6
7
6
7
4

 MOTOROLA TPU Programming Library
8 TPUPN16/D

8 Function Examples

8.1 Example A

8.1.1 Description

The following program uses the continuous mode to count input pulses and generate an interrupt each
time MAX_COUNT reaches a pre-specified value. In the continuous mode with no links, the ITC func-
tion repeatedly counts the number of transitions programmed in MAX_COUNT. Each time
TRANS_COUNT reaches the value in MAX_COUNT, TRANS_COUNT resets to zero. If
BANK_ADDRESS points to a valid parameter address, then the value in the high byte of that address
is incremented by one. If interrupts are enabled, as in this example, an interrupt request is made.
BANK_ADDRESS points to an unimplemented RAM location so that it does not affect operation of other
channels. For an example of how to use the parameter BANK_ADDRESS, see Example A of Period
Measurement with Additional Transition Detection (PMA) (TPUPN15A/D) or Period Measurement with
Missing Transition Detection (PMM) (TPUPN15B/D).

In this program, the ITC function on channel 1 counts input pulses from the PWM function on channel
0. Each time the ITC function counts seven pulses, it resets TRANS_COUNT to zero and requests an
interrupt. In order to see this is happening, the interrupt routine increments the pulse HIGH_TIME of the
SPWM wave by one. Thus, when the program runs, the output of the SPWM channel will be a square
wave with a constantly changing duty cycle.

Channel 0 is set up in PWM mode, channel 1 is set up in ITC mode, and channel 2 is set up in SPWM
mode. A physical connection must be made between channels 0 and 1.

8.2 Program Code for CPU32-Based Microcontrollers

This program was assembled using the IASM32 assembler available from P&E Microcomputer Sys-
tems with the M68332 In-Circuit Debugger. It was run on an M68332EVS and BCC.

TPUMCR equ $fffe00
TICR equ $fffe08
CIER equ $fffe0a
CFSR0 equ $fffe0c
CFSR1 equ $fffe0e
CFSR2 equ $fffe10
CFSR3 equ $fffe12
HSQR0 equ $fffe14
HSQR1 equ $fffe16
HSRR0 equ $fffe18
HSRR1 equ $fffe1a
CPR0 equ $fffe1c
CPR1 equ $fffe1e
CISR equ $fffe20
* Channel 0 Parameters
PRAM0_0 equ $ffff00
PRAM0_1 equ $ffff02
PRAM0_2 equ $ffff04
PRAM0_3 equ $ffff06
PRAM0_4 equ $ffff08
PRAM0_5 equ $ffff0a
* Channel 1 parameters
PRAM1_0 equ $ffff10
PRAM1_1 equ $ffff12
PRAM1_2 equ $ffff14
PRAM1_3 equ $ffff16
PRAM1_4 equ $ffff18
PRAM1_5 equ $ffff1a
* Channel 2 parameters
PRAM2_0 equ $ffff20
PRAM2_1 equ $ffff22
TPU Programming Library MOTOROLA
TPUPN16/D 9

PRAM2_2 equ $ffff24
PRAM2_3 equ $ffff26
PRAM2_4 equ $ffff28
PRAM2_5 equ $ffff2a

8.3 Initialization
org $4000 ;begin at memory location $4000
move.w #$07a9,(CFSR3).l ;Channel Function Select Field (Function

;numbers may vary for different mask sets)
move.w #$00ff,(CPR1).l ;Channel Priority Field, high priority
move.w #$0004,(HSQR1).l ;ITC mode = continual with no links

;SPWM = mode 0

8.3.1 PWM Initialization for Channel 0

This PWM wave will have a pulse period of $200 and a pulse hightime of $100. The ITC function on
channel 1 will count the rising edges.

move.w #$0092,(PRAM0_0).l ;Channel Control, use TCR1
move.w #$0100,(PRAM0_2).l ;pulse hightime = 100
move.w #$0200,(PRAM0_3).l ;pulse period = 200

8.3.2 ITC Initialization for Channel 1

Since this program does not need to increment a parameter used by another function each time the
number of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an un-
implemented memory location.

move.w #$0007,(PRAM1_0).l ;Channel control, detect rising edge, use
TCR1

move.w #$000e,(PRAM1_1).l ;BANK_ADDRESS points to unimplemented RAM
move.w #$0007,(PRAM1_2).l ;MAX_COUNT = 7

8.3.3 SPWM Initialization for Channel 2 in Mode 0

The SPWM is set up in mode 0. It is initialized with a pulse hightime of $100 and a period of $600. The
interrupt routine changes the pulse hightime. REF_ADDR1 points to a reference value to which DELAY
and PERIOD are added to form the rising transition time. Here, it points to LASTRISE. LASTRISE con-
tains the TCR time of the previous low to high transition.

move.w #$92,(PRAM2_0).l ;Channel Control
move.w #$100,(PRAM2_2).l ;HIGH_TIME = $100
move.w #$600,(PRAM2_3).l ;PERIOD = $600
move.w #$0020,(PRAM2_4).l ;REF_ADDR1=$20 (LASTRISE)
move.w #$0000,(PRAM2_5).l ;DELAY = 0

8.3.4 Initialization of Interrupts for Channel 1

First, disable all TPU interrupts by writing zeros to the channel interrupt enable register (CIER). Second,
negate all TPU interrupt status flags by first reading the channel interrupt status register (CISR) and
then writing it to all zeros. Third, start the interrupt routine at the label INT by storing the address of INT
in the appropriate vector address location. For this example, the base vector number $80 is chosen.
This number is stored in the TPU interrupt configuration register (TICR). The actual interrupt vector
number is calculated by concatenating the base vector with the channel number. Thus, the interrupt
vector number is $81, since the program uses channel 1. The vector address (where the starting ad-
dress of the interrupt routine is stored) is calculated as four times the vector number plus the value in
the vector base register. In this case, the program was run on Motorola's Business Card Computer
(BCC) and the vector base register has already been initialized to $400 by CPU32Bug, so the vector
address is $4 ∗ $81 + $400, which equals $604.

The interrupt level must be set to a non-zero value in the TICR. The interrupt level chosen determines
 MOTOROLA TPU Programming Library
10 TPUPN16/D

the priority given to this interrupt by the CPU. Level 7 is the highest priority, and level 1 is the lowest.
This example uses level 6. Once an interrupt level has been chosen, bits [10:8] in the CPU status reg-
ister must be modified to allow recognition of that level of interrupt. These bits must be set to a number
that is lower than the interrupt level number to be recognized. Interrupts at the same level or lower than
the number in the CPU status register will be masked out and will not be recognized by the CPU. In
addition, the interrupt arbitration (IARB) field in the TPU module configuration register (TPUMCR) must
be set to a value between $1 and $F. This IARB field determines the interrupt's priority if two or more
modules with the same interrupt level request interrupts at the same time. In this example, the IARB
field is set to $5.

andi.w #$fffd,(CIER).l ;disable TPU interrupts on Channel 1
move.w (CISR).l,d0 ;clear TPU interrupt requests for Channel 1
andi.w #$fffd,(CISR).l
move.l #INT,($0604).l ;start interrupt routine at label INT
ori.w #$0005,(TPUMCR).l ;set IARB field
move.w #$0680,(TICR).l ;interrupt level 6, base vector = $80
andi.w #$f5ff,SR ;allow interrupts on level 6 and above

8.3.5 Service Initialization Request

Initialize channels 0, 1 and 2 and enable interrupts for channel 1.

move.w #$0026,(HSRR1).l ;Initialization for ch 0, 1, 2
ori.w #$0002,(CIER).l ;enable interrupts for channel 1

finish
bra finish

8.3.6 Interrupt Routine

This routine will be called each time TRANS_COUNT reaches MAX_COUNT. It will increment
HIGH_TIME of the SPWM wave until it reaches $500. Then, the HIGH_TIME will be reinitialized to
$100.

INT
andi.w #$fffd,(CIER).l ;disable interrupt in CIER
move.w (CISR).l,d0 ;read interrupt flag
andi.w #$fffd,(CISR).l ;clear interrupt
cmpi.w #$500,(PRAM2_2).l ;compare HIGH_TIME to $500
beq chng
addi.w #$0001,(PRAM2_2).l ;add $01 to HIGH_TIME of SPWM wave
bra done

chng
move.w #$0100,(PRAM2_2).l ;reset HIGH_TIME to #$100

done
ori.w #$0002,(CIER).l ;enable interrupt for channel 1
RTE ;Return from Exception

8.4 Program Code for CPU16-Based Microcontrollers

This program was assembled on the IASM16 Assembler available with the ICD16 In-Circuit Debugger
from P&E Microcomputer Systems and was run on an MC68HC16Y1EVB.

TPUMCR equ $fe00
TICR equ $fe08
CIER equ $fe0a
CFSR0 equ $fe0c
CFSR1 equ $fe0e
CFSR2 equ $fe10
CFSR3 equ $fe12
HSQR0 equ $fe14
HSQR1 equ $fe16
HSRR0 equ $fe18
HSRR1 equ $fe1a
TPU Programming Library MOTOROLA
TPUPN16/D 11

CPR0 equ $fe1c
CPR1 equ $fe1e
CISR equ $fe20
* Channel 0 parameters
PRAM0_0 equ $ff00
PRAM0_1 equ $ff02
PRAM0_2 equ $ff04
PRAM0_3 equ $ff06
PRAM0_4 equ $ff08
PRAM0_5 equ $ff0a
* Channel 1 parameters
PRAM1_0 equ $ff10
PRAM1_1 equ $ff12
PRAM1_2 equ $ff14
PRAM1_3 equ $ff16
PRAM1_4 equ $ff18
PRAM1_5 equ $ff1a
* Channel 2 parameters
PRAM2_0 equ $ff20
PRAM2_1 equ $ff22
PRAM2_2 equ $ff24
PRAM2_3 equ $ff26
PRAM2_4 equ $ff28
PRAM2_5 equ $ff2a

8.4.1 Initialization

The following code is included to set up the reset vector ($00000 – $00006). It may be changed for dif-
ferent systems.

ORG $0000 ;put the following reset vector information
 ;at address $00000 of the memory map
DW $0000 ;zk=0, sk=0, pk=0
DW $0200 ;pc=200 -- initial program counter
DW $3000 ;sp=3000 -- initial stack pointer
DW $0000 ;iz=0 -- direct page pointer
org $0400 ;begin program at memory location $0400

The following code initializes and configures the system; including the software watchdog and system
clock. It was written to be used with an EVB.

INITSYS: ;give initial values for extension regis-
ters

;and initialize system clock and COP
LDAB #$0F
TBEK ;point EK to bank F for register access
LDAB #$00
TBXK ;point XK to bank 0
TBYK ;point YK to bank 0
TBZK ;point ZK to bank 0
TBSK

 LDD #$0003 ;at reset, the CSBOOT block size is 512K.
 STD CSBARBT ;this line sets the block size to 64K since

;that is what physically comes with the EVB16
LDAA #$7F ;w=0, x=1, y=111111
STAA SYNCR ;set system clock to 16.78 MHz
CLR SYPCR ;turn COP off, since COP is on after reset
lds #$f000

**** MAIN PROGRAM ****
ldab #$0f
tbek ;use bank $0f for parameter RAM
ldab #$00
tbzk
ldz #$0000 ;use IZ for indexed offset
ldd #$07a9
std CFSR3 ;Channel Function Select Field (Note: func-
 MOTOROLA TPU Programming Library
12 TPUPN16/D

tion
ldd #$00ff ;numbers may vary for different mask sets)
std CPR1 ;Channel Priority Field, high priority
ldd #$0004
std HSQR1 ;ITC mode = continual with no links

;SPWM = mode 0

8.4.2 PWM Initialization for Channel 0

This PWM wave will have a pulse period of $200 and a pulse hightime of $100. The ITC function on
channel 1 will count the rising edges.

ldd #$0092
std PRAM0_0 ;Channel Control, use TCR1
ldd #$0100
std PRAM0_2 ;pulse hightime = 100
ldd #$0200
std PRAM0_3 ;pulse period = 200

8.4.3 ITC Initialization for Channel 1

Since this program does not need to increment a parameter in another memory location each time the
number of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an un-
implemented memory location. For an example in which BANK_ADDRESS is used, see Example A in
Period Measurement with Additional Transition Detection (PMA) (TPUPN15A/D) or Period Measure-
ment with Missing Transition Detection (PMM) (TPUPN15B/D).

ldd #$0007
std PRAM1_0 ;Channel control, detect rising edge, use

TCR1
ldd #$000e
std PRAM1_1 ;BANK_ADDRESS points to unimplemented RAM
ldd #$0007
std PRAM1_2 ;MAX_COUNT = 7

8.4.4 SPWM Initialization for Channel 2 in Mode 0

The SPWM is set up in mode 0. It is initialized with a pulse hightime of $100 and a period of $600. The
interrupt routine changes the pulse hightime. REF_ADDR1 points to a reference value to which DELAY
and PERIOD are added to form the rising transition time. Here, it points to LASTRISE. LASTRISE con-
tains the TCR time of the previous low to high transition.

ldd #$92
std PRAM2_0 ;Channel Control
ldd #$100
std PRAM2_2 ;HIGH_TIME = $100
ldd #$600
std PRAM2_3 ;PERIOD = $600
ldd #$0020
std PRAM2_4 ;REF_ADDR1=$20 (LASTRISE)
ldd #$0000
std PRAM2_5 ;DELAY = 0

8.4.5 Initialization of Interrupts for Channel 1

First, disable all TPU interrupts by writing zeros to the channel interrupt enable register (CIER). Second,
negate all TPU interrupt status flags by reading the channel interrupt status register (CISR) and then
writing it to all zeros. Third, start the interrupt routine at the label INT by storing the address of INT in
the appropriate vector address location. For this example, the base vector number $80 is chosen. This
number is stored in the TPU interrupt configuration register (TICR). The actual interrupt vector number
is calculated by concatenating the base vector with the channel number. Thus, the interrupt vector num-
TPU Programming Library MOTOROLA
TPUPN16/D 13

ber is $81, since this program uses channel 1. The vector address (where the starting address of the
interrupt routine is stored) is calculated as two times the vector number. In this case, the vector address
is $2 ∗ $81, which is equal to $102.

The interrupt level must be set to a non-zero value in the TICR. The interrupt level chosen determines
the priority given to this interrupt by the CPU. Level 7 is the highest priority, and level 1 is the lowest.
This example uses level 6. Once an interrupt level has been chosen, bits [6:4] in the CPU status register
must be modified to allow recognition of that level of interrupt. These bits must be set to a number that
is lower than the interrupt level number. Interrupts at the same level or lower than the number in the
CPU status register will be masked out and will not be recognized by the CPU. In addition, the interrupt
arbitration (IARB) field in the TPU module configuration register (TPUMCR) must be set to a value be-
tween $1 and $F. This IARB field determines the interrupt's priority if two or more modules with the
same interrupt level request interrupts at the same time. In this example, the IARB field is set to $5.

ldd CIER
andd #$fffd
std CIER ;disable TPU interrupts on Channel 1
ldd CISR ;clear TPU interrupt requests for Channel 1
andd #$fffd
std CISR
ldd #INT
std $0102,z ;start interrupt routine at label INT
ldd TPUMCR
ord #$0005
std TPUMCR ;set IARB field
ldd #$0680
std TICR ;interrupt level 6, base vector = $80
andp #$ff5f ;allow interrupts on level 6 and above

8.4.6 Service Initialization Request
Initialize channels 0, 1 and 2 and enable interrupts for channel 1.

ldd #$0026
std HSRR1 ;Initialization for ch 0, 1, 2
ldd CIER
ord #$0002
std CIER ;enable interrupts for channel 1

finish
bra finish

8.4.7 Interrupt Routine
This routine will be called each time TRANS_COUNT reaches MAX_COUNT. It will increment
HIGH_TIME of the SPWM wave until it reaches $500. Then, it will reinitialize HIGH_TIME to $100.

INT
ldd CIER
andd #$fffd
std CIER ;disable interrupt in CIER
ldd CISR ;read interrupt flag
andd #$fffd
std CISR ;clear interrupt
ldd PRAM2_2
cmpa #$05 ;compare HIGH_TIME to $500
bne skip
tstb
beq chng

skip
addd #$0001
std PRAM2_2 ;add $01 to HIGH_TIME of SPWM wave
bra done

chng
ldd #$0100
std PRAM2_2 ;reset HIGH_TIME to #$100
 MOTOROLA TPU Programming Library
14 TPUPN16/D

done
ldd CIER
ord #$0002
std CIER ;enable interrupt for channel 1
RTI ;Return from Exception

8.5 Example B

8.5.1 Description

The following program uses single shot with links mode to count input pulses and generate a link when
MAX_COUNT reaches a pre-specified value. In single-shot mode with links, the ITC function counts the
number of transitions programmed in MAX_COUNT once. When TRANS_COUNT reaches the value in
MAX_COUNT, a link is generated to the channel specified by START_LINK_CHANNEL, and the value
in the high byte of the parameter pointed to by BANK_ADDRESS is incremented by one. In this exam-
ple, BANK_ADDRESS points to an unimplemented RAM location so that it does not affect operation of
other channels.

In this program, the ITC function on channel 1 counts input pulses from the PWM function on channel
0. When the ITC function counts seven pulses, it generates a link to channel 2, which is set up to run
the SPWM function. This simply means that channel 1 issues a service request to channel 2. In order
to see when the link is generated, the SPWM square wave is programmed to be out of phase with the
PWM square wave. The rising edge of the SPWM wave will begin at the falling edge of the PWM wave.

Channel 0 is set up to run the PWM function, channel 1 is set up to run the ITC function, and channel
2 is set up to run the SPWM function. Use the same equates as for example A.

8.6 Program Code for CPU32-Based Microcontrollers

This program was assembled using the IASM32 assembler available from P&E Microcomputer Sys-
tems with the M68332 In-Circuit Debugger. It was run on an M68332EVS and BCC.

8.6.1 Initialization
org $4000;begin at memory location $4000
move.w #$07a9,(CFSR3).l ;Channel Function Select Field (channel

;numbers may vary for different mask sets)
move.w #$00ff,(CPR1).l ;Channel Priority Field, high priority
move.w #$0008,(HSQR1).l ;ITC mode = single with links

;SPWM = mode 0

8.6.2 PWM Initialization for Channel 0

This PWM wave will have a pulse period of $1000 and a pulse hightime of $500. The ITC function on
channel 1 will count the rising edges.

move.w #$0092,(PRAM0_0).l ;Channel Control, use TCR1
move.w #$0500,(PRAM0_2).l ;pulse hightime = 500
move.w #$1000,(PRAM0_3).l ;pulse period = 1000

8.6.3 ITC Initialization for Channel 1

In this example, the ITC function only links to channel 2. Thus, START_LINK_CHANNEL = 2, and
LINK_CHANNEL_COUNT = 1. As required, LINK_CHANNEL_COUNT is a value greater than zero and
less than or equal to eight.

Since this program does not need to increment a parameter in another memory location when the num-
ber of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an unim-
plemented memory location.

move.w #$0007,(PRAM1_0).l ;Channel control, detect rising edge, use
TPU Programming Library MOTOROLA
TPUPN16/D 15

TCR1
move.w #$210e,(PRAM1_1).l ;START_LINK_CHANNEL = 2,

;LINK_CHANNEL_COUNT = 1,
;BANK_ADDRESS points to unimplemented RAM

move.w #$0007,(PRAM1_2).l ;MAX_COUNT = 7

8.6.4 SPWM Initialization for Channel 2 in Mode 0

The SPWM is set up in mode 0 so that it can receive links from another channel. It is initialized with a
pulse hightime of $500 and a period of $1000. REF_ADDR1 points to a reference value to which DELAY
and PERIOD are added to form the rising transition time. Here, it points to FINAL_TRANS_TIME on the
ITC channel. FINAL_TRANS_TIME contains the TCR time of the final transition when MAX_COUNT is
reached.

move.w #$92,(PRAM2_0).l ;Channel Control
move.w #$500,(PRAM2_2).l ;HIGH_TIME = $500
move.w #$1000,(PRAM2_3).l ;PERIOD = $1000
move.w #$0018,(PRAM2_4).l ;REF_ADDR1 = $18
move.w #$0500,(PRAM2_5).l ;DELAY = $500

8.6.5 Service Initialization Request
move.w #$0026,(HSRR1).l ;Initialization for ch 0, 1, 2

finish
bra finish

8.7 Program Code for CPU16-Based Microcontrollers

This program was assembled on the IASM16 Assembler available with the ICD16 In-Circuit Debugger
from P&E Microcomputer Systems and was run on an MC68HC16Y1EVB.

8.7.1 Initialization

The following code is included to set up the reset vector ($00000 – $00006). It may be changed for dif-
ferent systems.

ORG $0000 ;put the following reset vector information
 ;at address $00000 of the memory map

DW $0000 ;zk=0, sk=0, pk=0
DW $0200 ;pc=200 -- initial program counter
DW $3000 ;sp=3000 -- initial stack pointer
DW $0000 ;iz=0 -- direct page pointer
org $0400 ;begin program at memory location $0400

The following code initializes and configures the system including the Software Watchdog and System
Clock. It was written to be used with an EVB.

INITSYS: ;give initial values for extension regis-
ters

;and initialize system clock and COP
LDAB #$0F
TBEK ;point EK to bank F for register access
LDAB #$00
TBXK ;point XK to bank 0
TBYK ;point YK to bank 0
TBZK ;point ZK to bank 0
TBSK

 LDD #$0003 ;at reset, the CSBOOT block size is 512K.
 STD CSBARBT ;this line sets the block size to 64K since

;that is what physically comes with the EVB16
LDAA #$7F ;w=0, x=1, y=111111
STAA SYNCR ;set system clock to 16.78 MHz
CLR SYPCR ;turn COP off, since COP is on after reset
lds #$f000

**** MAIN PROGRAM ****
 MOTOROLA TPU Programming Library
16 TPUPN16/D

ldab #$0f ;use bank $0f for parameter RAM
tbek
ldd #$07a9
std CFSR3 ;Channel Function Select Field (Note: func-

tion
ldd #$00ff ;numbers may vary for different mask sets)
std CPR1 ;Channel Priority Field, high priority
ldd #$0008
std HSQR1 ;ITC mode = single with links, SPWM = mode 0

8.7.2 PWM Initialization for Channel 0

This PWM wave will have a pulse period of $1000 and a pulse hightime of $500. The ITC function on
channel 1 will count the rising edges.

ldd #$0092
std PRAM0_0 ;Channel Control, use TCR1
ldd #$0500
std PRAM0_2 ;pulse hightime = 500
ldd #$1000
std PRAM0_3 ;pulse period = 1000

8.7.3 ITC Initialization for Channel 1

In this example, the ITC function only links to channel 2. Thus, START_LINK_CHANNEL = 2, and
LINK_CHANNEL_COUNT = 1. As required, LINK_CHANNEL_COUNT is a value greater than zero and
less than or equal to eight.

Since this program does not need to increment a parameter in another memory location when the num-
ber of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an unim-
plemented memory location.

ldd #$0007
std PRAM1_0 ;Channel control, detect rising edge, use

TCR1
ldd #$210e
std PRAM1_1 ;START_LINK_CHANNEL = 2,

;LINK_CHANNEL_COUNT = 1,
;BANK_ADDRESS points to unimplemented RAM

ldd #$0007
std PRAM1_2 ;MAX_COUNT = 7

8.7.4 SPWM Initialization for Channel 2 in Mode 0

The SPWM is set up in mode 0 so that it can receive links from another channel. It is initialized with a
pulse hightime of $500 and a period of $1000. REF_ADDR1 points to a reference value to which DELAY
and PERIOD are added to form the rising transition time. Here, it points to FINAL_TRANS_TIME on the
ITC channel. FINAL_TRANS_TIME contains the TCR time of the final transition when MAX_COUNT is
reached. This waveform will be delayed from the PWM waveform. Its rising edge will occur at the falling
edge of PWM.

ldd #$92
std PRAM2_0 ;Channel Control
ldd #$500
std PRAM2_2 ;HIGH_TIME = $500
ldd #$1000
std PRAM2_3 ;PERIOD = $1000
ldd #$0018
std PRAM2_4 ;REF_ADDR1=$18
ldd #$0500
std PRAM2_5 ;DELAY = $500
TPU Programming Library MOTOROLA
TPUPN16/D 17

8.7.5 Service Initialization Request
ldd #$0026
std HSRR1 ;Initialization for ch 0, 1, 2

finish
bra finish

9 Function Algorithm
At each transition detected, the TPU increments TRANS_COUNT and updates LAST_TRANS_TIME
to the value of the TCR. If TRANS_COUNT is greater than or equal to MAX_COUNT, then 1)
FINAL_TRANS_TIME is updated to contain the time of the last transition detected, 2) the parameter
addressed by BANK_ADDRESS is incremented, 3) an interrupt is asserted causing an interrupt to be
generated (if interrupt enable bit is set), 4) if the time function is in link mode, links to a sequential block
of channels are generated as specified by START_LINK_CHANNEL and LINK_CHANNEL_COUNT
parameters, and 5) if the function is in continuous mode, the TPU clears TRANS_COUNT and contin-
ues to count.

The ITC algorithm is described in the following paragraphs. The following description is provided as a
guide only, to aid understanding of the function. The exact sequence of operations in microcode may
be different from that shown, in order to optimize speed and code size. TPU microcode source listings
for all functions in the TPU function library can be downloaded from the Motorola Freeware bulletin
board. Refer to Using the TPU Function Library and TPU Emulation Mode (TPUPN00/D) for detailed
instructions on downloading and compiling microcode.

9.1 State 1: Init

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 01xxxx

Match Enable: Don't Care A.2.1 State 1 Init

Summary:
Initialization is entered as a result of HSR %01. The channel executing the time function is config-
ured. TRANS_COUNT is initialized to zero. The transition type and time base are selected as per
the CHANNEL_CONTROL parameter.

Algorithm:
Configure channel latches via CHANNEL_CONTROL
TRANS_COUNT = 0
Negate MRL, TDL, and LSR

9.2 State 2: Count_Up

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xxx

Match Enable: Don't Care

Summary:
This state is entered as a result of a transition. TRANS_COUNT is incremented and if
TRANS_COUNT is less than MAX_COUNT, LAST_TRANS_TIME is updated to contain the time of
the last transition. If TRANS_COUNT is greater than or equal to MAX_COUNT, then:

• FINAL_TRANS_TIME is updated to contain the time of the last transition, and an interrupt request
is asserted.

• The byte referenced by BANK_ADDRESS is incremented. If this increment is not desired,
BANK_ADDRESS should contain a nonexistent address (such as $0E).
 MOTOROLA TPU Programming Library
18 TPUPN16/D

• If the time function is in link mode, links are generated to a sequential block of channels as spec-
ified by START_LINK_CHANNEL and LINK_CHANNEL_COUNT.

• If the time function operates in continuous mode, the function re-executes state 1, and
TRANS_COUNT is reinitialized to zero. In single (noncontinuous) mode, the function terminates
by ignoring all further transitions.

Algorithm:
TRANS_COUNT = TRANS_COUNT + 1
If TRANS_COUNT ≥ MAX_COUNT then {

FINAL_TRANS_TIME = time of last transition.
If host sequence bit 1 = 1 then {

Link to channels START_LINK_CHANNEL
to [START_LINK_CHANNEL + LINK_CHANNEL_COUNT – 1]

}
(BANK_ADDR) = (BANK_ADDR) + 1

If host sequence bit 0 = 0 then {
negate MRL, TDL, LSL
interrupt request
ignore further transitions

}
Else {

configure channel latches via CHANNEL_CONTROL
TRANS_COUNT = 0
Negate MRL, TDL, LSL

}
}
Else{

LAST_TRANS_TIME = time of last transition
Negate TDL

}

The following table shows the ITC transitions listing the service request sources and channel conditions
from current state to next state. Figure 4 illustrates the flow of ITC states.

NOTES:
1. Conditions not specified are “don't care.”
2. LSR = Link service request

MTSR = Host service request
M/TSR = Either a match or transition (input capture) service request occurred (M/TSR = 1) or neither occurred (M/
TSR = 0).

Table 3 ITC State Transition Table

Current State HSR M/TSR LSR Pin Flag0 Flag1 Next State

Any State 01 — — — — — S1 Init

S1 Init 00 1 — — — — S2 Count_Up

S2 Count_Up 00 1 — — — — S2 Count_Up

Unimplemented
 Conditions

00
10
11

0
—
—

1
—
—

x
—
—

—
—
—

—
—
—

—
—
—

TPU Programming Library MOTOROLA
TPUPN16/D 19

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

Figure 4 ITC State Flowchart

1020A

HSR = 00
M/TSR = 0

M/TSR = 1
HSR = 00

HSR = 01

KEY:

HSR M/TSR LSR PIN FLAG0 FLAG1
XX X X X X X

01XXXX

S1
INIT

001XXX

S2
COUNT_UP

000XXX

IDLE

1X0XXX M/TSR = 0
HSR = 00

M/TSR = 1
HSR = 00

HSR = 01

	1 Functional Overview
	2 Detailed Description
	2.1 Single Shot Without Links
	2.2 Continual Without Links
	2.3 Single Shot With Links
	2.4 Continual With Links

	3 Function Code Size
	4 Function Parameters
	Figure 1 TPU Channel Parameter RAM CPU Address Map...
	Figure 2 ITC Function Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	Table 1 ITC CHANNEL_CONTROL Options

	4.2 START_LINK_CHANNEL
	4.3 LINK_CHANNEL_COUNT
	4.4 BANK_ADDRESS
	4.5 MAX_COUNT
	4.6 TRANS_COUNT
	4.7 FINAL_TRANS_TIME
	4.8 LAST_TRANS_TIME

	5 Host Interface to Function
	Figure 3 TPU Address Map

	6 Function Configuration
	6.1 MAX_COUNT and TRANS_COUNT Alteration

	7 Performance and Use of Function
	7.1 Performance
	Table 2 ITC State Timing

	7.2 Changing Mode

	8 Function Examples
	8.1 Example A
	8.1.1 Description

	8.2 Program Code for CPU32-Based Microcontrollers
	8.3 Initialization
	8.3.1 PWM Initialization for Channel 0
	8.3.2 ITC Initialization for Channel 1
	8.3.3 SPWM Initialization for Channel 2 in Mode 0
	8.3.4 Initialization of Interrupts for Channel 1
	8.3.5 Service Initialization Request
	8.3.6 Interrupt Routine

	8.4 Program Code for CPU16-Based Microcontrollers
	8.4.1 Initialization
	8.4.2 PWM Initialization for Channel 0
	8.4.3 ITC Initialization for Channel 1
	8.4.4 SPWM Initialization for Channel 2 in Mode 0
	8.4.5 Initialization of Interrupts for Channel 1
	8.4.6 Service Initialization Request
	8.4.7 Interrupt Routine

	8.5 Example B
	8.5.1 Description

	8.6 Program Code for CPU32-Based Microcontrollers
	8.6.1 Initialization
	8.6.2 PWM Initialization for Channel 0
	8.6.3 ITC Initialization for Channel 1
	8.6.4 SPWM Initialization for Channel 2 in Mode 0
	8.6.5 Service Initialization Request

	8.7 Program Code for CPU16-Based Microcontrollers
	8.7.1 Initialization
	8.7.2 PWM Initialization for Channel 0
	8.7.3 ITC Initialization for Channel 1
	8.7.4 SPWM Initialization for Channel 2 in Mode 0
	8.7.5 Service Initialization Request

	9 Function Algorithm
	9.1 State 1: Init
	9.2 State 2: Count_Up
	Table 3 ITC State Transition Table
	Figure 4 ITC State Flowchart

