
MOTOROLA TPU REFERENCE MANUAL
1

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS 3

4 DEVELOPMENT SUPPORT 4

4.1 Scheduler 4
4.1.1 Priority Scheme 6
4.1.2 Time-Slot Latency 9

4.2 Microengine 9
4.2.1 Control Store 11
4.2.2 Entry Point Format 13
4.2.3 Microprogram Counter (µPC) 14
4.2.4 Branch PLA 14
4.2.5 Return Address Register (RAR) 15
4.2.6 Decrementor 16
4.2.7 Flag Registers 16
4.2.8 Microinstruction Register 16
4.2.9 Microinstruction Decode 16
4.2.10 Emulation via RAM 16
4.2.11 Microinstruction Formats and Encodings 17
4.2.12 Microengine Timing 17
4.2.13 Time-Slot Transition Period 19
4.2.14 Microengine Data References 20

4.3 Execution Unit 22
4.3.1 Arithmetic Unit (AU) 24
4.3.2 AU Shifter 26
4.3.3 Shift Register (SR) 27
4.3.4 Preload Register (P) 27
4.3.5 Data Input/Output Buffer Register (DIOB) 28
4.3.6 Accumulator Register (A) 28
4.3.7 Event Register Temporary (ERT) Register 29
4.3.8 Registers Affecting Microengine 29
4.3.9 Miscellaneous 31

4.4 RAM Operations 31
4.4.1 RAM Accesses 32

4.5 Channel Control Operations 33
4.5.1 Channel Operation 33
4.5.2 Event Register 35
4.5.3 Latch Control 37
4.5.4 Pin Control and TPU Pins 38

4.6 TPU Microcode Development Support 39
4.6.1 Test Configuration Register 41
4.6.2 Development Support Control Register 43
4.6.3 Development Support Status Register 45
4.6.4 Test Verification Registers 46
4.6.5 Test Scan Registers 48

MOTOROLA TPU REFERENCE MANUAL
2

4.7 Using the TPU Development Support Features 50
4.7.1 Setting Up Breakpoints 51
4.7.2 Steps for Scanning Out the Value of a TPU Register 54
4.7.3 To Scan into a TPU Register 55
4.7.4 To Scan Out of the Microinstruction Register 55
4.7.5 To Scan into the Microinstruction Register 57
4.7.6 Running the TPU in Emulation Mode 57
4.7.7 Dumping the Contents of the Control Store 58
4.7.8 Single Stepping the TPU 60

4.8 Example: A Coherency Solution 61
4.8.1 Coherency Requirements for the TPU 61
4.8.2 Solution 61
4.8.3 Parameter Registers Allocated for Coherency 62
4.8.4 Four-Parameter Coherency Microcode Example 64

MOTOROLA TPU REFERENCE MANUAL
3

LIST OF ILLUSTRATIONS

Figure 4-1. TPU Detailed Block Diagram 5
Figure 4-2. Priority Levels 6
Figure 4-3. Priority Passing 7
Figure 4-4. Time-Slot Variation 9
Figure 4-5. Control Store 11
Figure 4-6. Entry Point Address Generation 13
Figure 4-7. Entry Point Format 13
Figure 4-8. RAM Configuration 17
Figure 4-9. Wait States 18
Figure 4-10. Microengine Timing 18
Figure 4-11. T2\ Timing 19
Figure 4-12. T4\ Timing 19
Figure 4-13. Time-Slot Transition Period Timing 21
Figure 4-14 . Carry and Overflow Calculation for Word/Byte Operation 26
Figure 4-15. Channel Block Diagram 34
Figure 4-16. Channel Control Timing 36
Figure 4-17. TCR1 Control Structure 42
Figure 4-18. 512-Byte TPU Test Memory Map 43
Figure 4-19. Hardware Scheduler State Diagram 50
Figure 4-20. TPU RAM 61
Figure 4-21. Coherent Data Flow 62

MOTOROLA TPU REFERENCE MANUAL
4

4 Development Support
This section serves as a guide to a more thorough understanding of the TPU architecture for the
purpose of debugging microcode in a system environment. Development support encompasses
operation of the scheduler, microengine, execution unit, RAM, timer channels, and development
support registers. Figure 4-1, which shows a detailed block diagram of the full TPU, is divided
into five main units: the scheduler, the microengine, the execution unit, the timer channels, and
the host interface (including the registers and parameter RAM).

4.1 Scheduler
Every time function executed on a particular channel is composed of one or more states. A state
is constructed of a specific number of microinstructions that are not interruptible when executed
by the microengine. This microinstruction set is typically the code necessary to calculate the next
phase of a waveform to be input or output from a given channel. The intent of every channel is to
receive time for state execution (to be serviced). Since one microengine handles 16 time
functions operating concurrently, the time function states must be executed serially. The task of
the scheduler is to recognize and prioritize the channels needing service and to grant each channel
state execution time. The time given to an individual state for execution or service is called a
time slot. The duration of a time slot is determined by the number of microinstructions the state
contains and, therefore, varies in length.

At any time, an arbitrary number of channels can require service by the microengine. To request
service, a channel notifies the scheduler by issuing a service request. A service request, which is
any occurrence that asserts the service request latch, has four origins:

1. Match Recognition Service Request
2. Transition Detect Service Request
3. Channel Linking Service Request
4. Host Service Request

MOTOROLA TPU REFERENCE MANUAL
5

Figure 4-1. TPU Detailed Block Diagram

The scheduler then grants the channel a time slot. Once a time slot is granted, the service grant
latch for that channel is asserted, which disables the service request latch. As a result, the
channel may request new service, but is not serviced again until all other requesting channels
have been serviced. The service grant latch then notifies the scheduler that the channel has been
granted a time slot. Likewise, while this latch is asserted, the channel is not granted another time
slot for new service.

MOTOROLA TPU REFERENCE MANUAL
6

In addition to organizing incoming requests, the scheduler must also ensure that no channel
permanently blocks another channel from receiving a time slot. To meet such demand,
scheduling necessitates a priority scheme.

4.1.1 Priority Scheme
For servicing, every channel is assigned one of three priority levels: high, middle, or low.
Assignment, as specified in the system priority registers, is discussed in 2.2.6 Channel Priority
Registers (CPR1, CPR2). Priority level is determined based on the maximum latency desired
for each channel. A channel having a time function that requires the most frequent or more
immediate service should be allocated a high priority level. To execute service requests, the
scheduler addresses two aspects of priority: 1) it recognizes that the time function of one channel
may require data more frequently than the function of another channel, and 2) it recognizes that
all channels need an equal opportunity to be serviced.

The TPU employs a primary and a secondary priority scheme. These two schemes ensure
frequent servicing of high-demanding time functions and ensure a minimum time allocation to all
channels requesting service, regardless of their priority level. The primary scheme prioritizes
requesting channels that have different priority levels; the secondary scheme prioritizes
requesting channels that have the same priority level. The relationship of these schemes is
discussed in the following paragraphs.

Initially, a channel requests service and is granted a time slot by the scheduler. Both service
request and service grant latches are asserted. If only high -level channels constantly receive
service first because of their priority level, middle and low-level channels would only be serviced
by default, i.e., if no high-level channels request service. To ensure that each priority level
receives an opportunity for servicing, every time slot has a fixed priority level that the scheduler
honors first. Divided into sets of seven, time slots are numbered from one to seven. Figure 4-2
illustrates the numbered time slots in sets of seven (fields A and B) and identifies their assigned
priority level. The high level has more time slots than the middle and low levels. Out of every
seven time slots available, four are assigned to honor high-level channels first, two are assigned
to honor middle-level channels first, and one is assigned to honor low-level channels first.
Service requests are assigned a time slot for execution. Only one request is serviced per time slot.

Figure 4-2. Priority Levels

MOTOROLA TPU REFERENCE MANUAL
7

4.1.1.1 Primary Scheme – Priority among Channels on Different Priority
Levels

Although time priority is fixed, the servicing priority is not. The primary scheme acknowledges
the priority level assigned to a-time slot, granting service first to a channel having the same
priority. Referring again to Figure 4-2, time slot 1 has a high-level assignment; therefore, any
high-level channel requesting service is recognized first. However, if no high-level channel
requests service, the scheduler recognizes a requesting middle-level channel. If this level has no
request, the scheduler continues to the low level. If no requests occur, the scheduler remains in
the time slot waiting for any channel to request service. Granting service to a different-level
channel is called priority passing. The order of passing, which always gives second priority to a
high-level channel, is as follows:

Assigned
Priority Level

Next Priority
Level

Next Priority
Level

High → Middle → Low
Middle → High → Low
Low → High → Middle

When priority is passed to another level, that level is serviced and the fixed priority-level
sequence is resumed with the next time slot. In field A of Figure 4-3, no high-level service
requests are present before time slot 7. Thus, time slots 1, 3, and 5, which are normally granted to
the high-level channels, are passed to the next privileged level. Time slot 1 passes priority to a
requesting middle-level channel; time slot 3 passes priority to another middle-level channel, but
time slot 5 passes priority to a low-level channel since no middle level channel is requesting
service.

Figure 4-3. Priority Passing

A two-microcycle no operation (NOP) is introduced after channel service under the following
condition: when the service request of a channel is recognized and the channel is the last one on a
priority level whose service grant latch is negated. When that channel has been serviced, an NOP
is executed. At all other times, service proceeds with the next time slot number without
introduction of the NOP. This delay mechanism, necessary because of design timing constraints,
allows the last channel serviced to be included in the next arbitration for new service on its
assigned priority level. This mechanism is necessary for the secondary scheme.

MOTOROLA TPU REFERENCE MANUAL
8

4.1.1.2 Secondary Scheme – Priority among Channels on the Same Priority
Because channels can randomly request service, inevitably, channels having the same priority
level will request service simultaneously. A secondary scheme prioritizes these requests. The
scheduler services channels on each of the three priority levels, beginning with the lowest
numbered channel on that level. It services all requesting same-level channels before clearing
any of them for new service.

4.1.1.3 Correlation of Primary and Secondary Schemes
The overall priority scheme simultaneously incorporates both primary and, secondary schemes.
Combining both schemes in the following example conveys their correlation.

1. Having its service request latch asserted, a single high-level channel requires service and is
granted time slot 1, which has high-level priority. (Primary scheme) Once serviced, the
channel’s service grant latch is asserted. Next, both service latches, grant and request, are
negated, and a two-microcycle NOP is executed.

2. The scheduler proceeds to time slot 2, which has middle-level priority; however, no middle-
level channel is requesting service. Priority is then passed to the high level, but no high-level
channel is requesting service; therefore, priority is passed again, and service is granted to the
single requesting low-level channel. Once scheduled, this channel’s service latches are
negated, and a NOP is executed.

3. The scheduler resumes with the fixed-priority sequence on time slot 3; however, no channels
are requesting service. An NOP is executed, and the scheduler remains at time slot 3
executing NOPs while waiting for requests.

4. Three high-level channels simultaneously request service. (Secondary scheme) The scheduler
finds the lowest numbered high-level channel and assigns it to time slot 3, which has high-
level priority. This channel’s service grant latch is asserted; however, the two remaining
high-level channels have asserted service request latches.

5. The scheduler continues to time slot 4, which has low-level priority, and allocates the slot to
the lowest numbered low-level channel requesting service. (Primary scheme) The scheduler
notes the still unserviced low-level channels and proceeds to time slot 5. (Secondary scheme
resumes)

6. The next lowest numbered high-level channel is assigned to time slot 5, which has high-level
priority. Noting the one remaining high-level channel, the scheduler continues to time slot 6.

7. However, time slot 6 has middle-level priority, and multiple middle-level channels are
requesting service. (Primary scheme) The slot is allocated to

8. the lowest numbered mid-level channel. (Secondary scheme) The remaining mid-level
channels are still unserviced, and the scheduler proceeds to time slot 7. (Secondary scheme
resumes)

9. Having high-level priority, time slot 7 is allocated to the third high-level channel that initially
requested service in time slot 4. This channel’s service grant latch is asserted. The scheduler
checks again. All service grant latches are asserted; therefore, all high-level channels have
been allocated execution time. Under this condition, all service request and service grant
latches of the high-level serviced channels are negated, and a NOP is executed.

10. The scheduler proceeds to time slot 1 again.

NOTE
Note that in numbers 6 and 7 multiple mid and low channels are requesting.

MOTOROLA TPU REFERENCE MANUAL
9

4.1.2 Time-Slot Latency
Latency is the amount of time between a service request and the beginning of service on that
channel. The factors that affect latency are as follows:

• Number of active channels

• Number of channels on a priority level

• Number of available time slots on a priority level

• Number of microcycles required to execute a state of a time function

• TPU module clock frequency

Each time slot may require a different number of microcycles, depending on the state of a time
function to be executed. This variation is graphically shown in Figure 4-4 where “microcycles”
exemplify the number of microcycles executed for each state serviced.

Figure 4-4. Time-Slot Variation

If the maximum time slot for each channel and the number of RAM accesses by the host CPU are
known, the user can determine the maximum latency that will occur for each channel. This data
and a method of calculating the worst-case latency are given in APPENDIX D TIMING
SUMMARY.

4.2 Microengine
The microengine provides control over the execution unit and timer channels to synthesize time
functions. Signals to the control points of the TPU are decoded from microinstructions.

In the discussion, the term microengine is restricted as an entity to the controlling elements within
its physical location. The microengine actually functions through the interaction of the following
elements: the control store, microprogram counter (µPC), branch programmable logic array
(PLA), function select registers, return address register (RAR), decrementor (DEC), flag registers

MOTOROLA TPU REFERENCE MANUAL
10

in the arithmetic unit (AU), microinstruction register, microinstruction decode, and the emulation
control.

The microengine can access the control store, a program memory array. This array contains the
microinstructions necessary for the synthesis of time functions. Predefined time functions are in
a ROM control store. Real-time emulation capability is provided by the MCU RAM module. An
emulation mode allows up to 16 functions to be executed out of the RAM. Sequential access of
the control store is provided by the µPC. The microengine can modify the sequential access
based on a condition related to the channel receiving service.

The control store also contains entry points consisting of beginning addresses for the microcode
sequences of the time functions as well as other data. An entry point is determined based on the
channel function executing and the channel conditions. Branching within the microcode
sequence is greatly reduced since the important channel conditions determine the entry point.

Any of the 16 time functions can be executed on a channel. The channel function select register
(see 2.2.3 Channel Function Select Registers (CFSRO, CFSRI, CFSR2, CFSR3)) contains a
field for each channel that specifies the function to be executed.

A state is constructed of a specific number of microinstructions that is not interruptible when
executed by the microengine. This set of microinstructions is typically the code necessary to
calculate the next phase of any single waveform to be input or output from a given channel. Prior
to the execution of a state, a parameter necessary for the servicing of the channel is preloaded into
the execution unit, thereby reducing the number of microinstructions required in each state.

The microengine provides several sequencing features. For example, one-level subroutining or
repetitive execution of a single microinstruction for up to 17 times is possible. Another
sequencing feature allows up to 16 microinstructions to be used as a subroutine, providing the
capability of jumping (or subroutining) to a sequence of microinstructions, executing a
programmable number of microinstructions in that sequence, and then returning to the original
sequence. Sequence control is aided by a 4-bit decrementor located in the execution unit.

Immediate, memory direct, and memory indirect addressing modes are provided by the
microengine. Both absolute and relative address calculation techniques may be used for the
formation of the address. Absolute address calculation indicates that the operand is the address.
Relative address calculation indicates that the operand field is arithmetically related to the
channel number. Relative address calculation is very useful in designing reentrant
microinstruction sequences that can be executed on any channel. TPU operands include
parameter, link, channel, and decrement-count values.

Because of the restriction on access time of the control store due to emulation requirements,
overlap fetching of the next microinstruction (pipelining) is incorporated to improve microengine
performance by fetching the next microinstruction while the current microinstruction is being
executed. Therefore, the next microinstruction, whose address is contained in the µPC, is ready
for execution.

Programmable microinstruction flush control has also been incorporated to eliminate the
microcoding restrictions associated with pipelining. The microinstruction following a branch or
jump microinstruction may be executed either before the branch occurs or "flushed" to cause no
action. Consequently, no microinstructions are wasted in performing an NOP following the
execution of a branch microinstruction. If the microcode flow permits, the microinstruction

MOTOROLA TPU REFERENCE MANUAL
11

following a jump or branch microinstruction can be programmed for execution, regardless of the
eventual outcome of the branch, using an otherwise wasted cycle.

4.2.1 Control Store
The control store, the program memory array of the microengine, is divided into two segments:
the microcode and the entry points, as shown in Figure 4-5.

Figure 4-5. Control Store

4.2.1.1 Microcode Segment
This segment contains the microinstructions required to synthesize functions. Each
microinstruction is 32 bits. Formats for the microinstructions are found in APPENDIX B
MICROINSTRUCTION FORMATS AND ENCODINGS. Table 4-1 provides a quick
reference that identifies all the fields and bits of the microinstructions.

Table 4-1. Microinstruction Bit/Field Quick Reference Guide

Format Number (Bits)Bit/Field
Mnemonic Function 1 2 3 4 5

AID (6:0) RAM Address/Immediate Field 8-2 8-2
BAF (8:0) Branch Address Field 24-16 24-16
CJC Conditional Jump Code 29-26
BCF Branch Conditional False 8
BINV AU B-Bus Invert Control 12 12
CCL AU Condition Latch Control 17 17

MOTOROLA TPU REFERENCE MANUAL
12

Format Number (Bits)
CCM Channel Control MUX 2
CIN AU B-Bus Carry Control 13 13
CIR Channel Interrupt Request 2 2
DEC/END Decrementor/End State Control 1-0 1-0 1-0 1-0
ERW Event Register Write Control 29
FLC Flag Control 5-3 5-3 15-13 5-3
FLS µPC Flush Control 25 25
IOM RAM Input/Output Mode Control 11-9 11-9
LSL Link Service Negation Latch Control 8 12 8
MRL Match Recognition Negation Latch

Control
17

MTD Match/Transition Detect Service
Request Inhibit Control

1-0

NMA Next µPC Address Mode Control 27-26
PAC Pin Action Control 11-9 11-9
PSC Pin State Control 7-6 7-6
RW RAM Read-Write Control 29 28
SHF AU Shifter Control 20-19 20-19 20-19
SRC Shift Register Control 18 18
T1ABS T1 A-Bus Control 28-25 28-25 28-25
T1BBI T1 B-Bus Immediate Data 16-9
T1BBS T1 B-Bus Source Control 16-14 16-14
T3ABD T3 A-Bus Destination Control 24-21 24-21 24-21
TBS Time Base Select Control 15-12
TDL Transition Detect Negation Latch

Control
18

4.2.1.2 Entry Point Segment
The entry points contain information about the state to be executed. The information includes a
preload-parameter selection field, a preload-parameter destination field, a match enable field, and
the beginning microcode address of the state. A total of 256 entry points exist, 16 points for each
of the 16 possible time functions. Unused entry points may be used for microcode. Formatting
of the entry points is given in 4.2.2 Entry Point Format.

During the time-slot transition period, the µPC is initially updated with an entry point address
formed by concatenating the function select field with an encoded version of the channel
conditions (see 4.2.13 Time-Slot Transition Period). This combination forms an address for
accessing an entry point which, in turn, contains the address of the first microword of a state to be
executed (see Figure 4-6). Encoding of the channel conditions is shown in Table 3-1 Entry
Points and Channel Conditions. If multiple service request sources inclusive of a host service
request are asserted when a channel receives a time slot, the host service request is granted higher
priority and is serviced first. Another time slot is scheduled by the scheduler for the remaining
service request sources.

MOTOROLA TPU REFERENCE MANUAL
13

Figure 4-6. Entry Point Address Generation

4.2.2 Entry Point Format
Figure 4-7 illustrates the format content of the entry point segment.

Figure 4-7. Entry Point Format

PRELOAD - Preload Parameter
This bit field indicates which channel parameter will be loaded into the execution unit prior to the
execution of a state. If the parameter number is six or seven for those channels that only have
parameters zero to five, the destination register (preload (P) or data input/output buffer (DIOB))
is loaded with $0000. Preloading occurs during the time-slot transition period (see 4.2.13 Time-
Slot Transition Period).

ME - Match Enable
ME specifies whether match events are enabled or disabled during execution of the state
associated with the entry point. If they are disabled, a match event, which happens due to a value
in the match register, occurs after channel service if the match register remains unchanged. For
more details refer to 4.5.3.2 MATCH ENABLE LATCH (MEL).
0 = Matches are disabled.
1 = Matches are enabled.

PPD - Preload Parameter Destination: DIOB or P Registers
PPD indicates the destination in the execution unit for the preloaded parameter. If bits 9 and 10
are 11, then no preload occurs.
0 = P register is destination for preloaded parameter.
1 = DIOB register is destination for preloaded parameter.

MICROCODE ADDRESS - Starting Microcode Address
This field contains the microcode address at which the state is to begin execution by loading this
value into the µPC.
Xxxxxxxxx Starting microcode address ($000-$lFF)

MOTOROLA TPU REFERENCE MANUAL
14

4.2.3 Microprogram Counter (µPC)
The µPC contains the address used to access a microword from the control store for execution
during the next microcycle. The address may be generated in one of five ways:

1. By the function select field (in the function select register) concatenated with an encoded
version of the channel conditions for the channel to be serviced;

2. By a beginning microcode address from the control store;

3. By an incremented value of the µPC;

4. By an address field of a jump or branch microinstruction;

5. By the contents of the return address register.

As described in 4.2.1.2 ENTRY POINT SEGMENT, the µPC is initially updated with the
function select field during the time-slot transition period. Two microcycles later, the beginning
address of the state, contained in the entry point, is loaded into the µPC and execution begins.

During execution of a state, the µPC is sequentially incremented unless the microcode calls for a
change in sequence by a branch or use of a subroutine. A conditional branch, an unconditional
jump to a new sequence, or a jump to a subroutine loads the µPC with the content of the branch
address field (BAF). A return from subroutine (format 4) loads µPC with the content of the RAR.

When the content of BAF is loaded into µPC, flush control (FLS) is examined. FLS indicates
whether the microinstruction following a jump or branch microinstruction is to be flushed. That
is, it determines it a NOP is executed following a jump microinstruction or if the microinstruction
following the branch microinstruction is executed. This feature provides for more efficient use of
microcode space with consideration to pipelining, which is discussed in 4.2 MICROENGINE.

4.2.4 Branch PLA
The decision-making capability of the microengine is provided through a conditional branch
operation. As previously mentioned, the µPC is normally incremented. However, a branch may
be desired based on some condition related to the channel being serviced. Conditions on the
channel are referred to as branch conditions, and specification of one of these conditions is
referred to as a branch condition code. The branch conditions are as follows:

• Match Recognition Latch

• Transition Detection Latch

• Link Service Latch

• Pin Status

• Host Sequence Bits (two)

• AU Flags: Carry, Negative, Overflow, and Zero

MOTOROLA TPU REFERENCE MANUAL
15

• Channel Flags (two)

Since the channels of the TPU are free running, some branch conditions are latched for input into
the branch PLA to ensure proper servicing by the microengine. All branch conditions except pin
status, AU flags, and channel flags are latched only during the time-slot transition period. The
pin status is latched during the time-slot transition period and when the CHAN register is changed
via microcode. Latching of the AU flags is controlled via microcode. The microcoder must latch
the AU flags in the microcycle in which the calculation occurs since these flags change each
microcycle. Lastly, the state of the channel flags currently executing are always input directly
into the branch PLA. Therefore, the branch conditions latched into the branch PLA pertain only
to the scheduled channel with one exception: when CHAN register is changed, the latches for pin
state and the channel flags in the flag registers are updated for the new channel. Refer to 4.3.8.1
CHANNEL NUMBER REGISTER (CHAN) for additional information.

Either the true or false state of a branch condition can be used for branching. As shown in the
following table, this selection is specified by the branch condition set/clear field (BCF). When
BCF = 1, the BAF of formats 3 and 4 microinstructions is loaded into the µPC if the branch
condition defined by the conditional jump code (CJC) field is met. Otherwise, the µPC is
incremented or loaded from one of the other sources. When BCF = 0, BAF is loaded into the
µPC if the branch condition defined by CJC is not met. Otherwise, the µPC is incremented or
loaded from one of the other sources.

BCF CJC µPC Loaded With
0
0
1
1

Not Met
Met
Not Met
Met

BAF
µPC + 1
µPC + 1
BAF

4.2.5 Return Address Register (RAR)
RAR provides for one-level subroutining. When a subroutine jump is programmed with next-
microword-address (NMA) mode control of format 4 microinstructions, a microinstruction
address, modified according to FLS, is loaded into RAR.

When a subroutine return is executed or the decrementor decrements to one while in a special
mode (see 4.3.8.2 DECREMENTOR (DEC)), the µPC is loaded with the contents of RAR.

When a subroutine jump microinstruction is executed while FLS = 1, indicating that the next
microinstruction is not to be flushed, RAR is loaded with µPC + 1. In this case, the first
microinstruction executed upon return from the subroutine is the microinstruction following the
unflushed (executed) microinstruction. When FLS = 0, indicating that the next microinstruction
is to be flushed, RAR is loaded with µPC. Therefore, the first microinstruction executed upon
return from the subroutine is the flushed microinstruction. The effect of the FLS bit on
microinstruction flow is shown in the following illustration:

MOTOROLA TPU REFERENCE MANUAL
16

4.2.6 Decrementor
Refer to 4.3.8.2 DECREMENTOR (DEC) for a description of the decrementor.

4.2.7 Flag Registers
Included within the microengine are two flag registers. Each contains one flag associated
with each channel. Only the TPU may assert and negate these flags. The flag is
addressed by the microcode flag-control (FLC) field, and the CHAN register. If CHAN
is changed by microcode on a given microcycle, a flag-set or a flag-clear operation on the
immediately following cycle will affect the flags of the previous channel addressed.
Refer to 4.3.8.1 CHANNEL NUMBER REGISTER (CHAN) for more information.

4.2.8 Microinstruction Register
The 32-bit register contains the microinstruction currently being executed.

4.2.9 Microinstruction Decode
The signals affecting the control points of the TPU are driven by this logic.

4.2.10 Emulation via RAM
Emulation for the TPU is provided with the use of the RAM module on the MCU. In
emulation mode the RAM is accessed only by the TPU and contains state information,
entry points, and microcode for up to 16 functions. Access to the RAM module through
the intermodule bus (IMB) by a host is blocked. During normal operation, the RAM is

MOTOROLA TPU REFERENCE MANUAL
17

used for system purposes. A programmable switch is used to configure the RAM module
in one of the two modes shown in Figure 4-8.

Figure 4-8. RAM Configuration

To utilize the emulation mode, the user must first load microcode into the RAM from the IMB
through the RAM bus interface unit (BIU), and then assert the EMU bit in the TPU module
configuration register. Assertion of EMU configures both modules for emulation mode, causing
the MCU to function as the control store for the TPU. In emulation mode, only functions
contained in RAM can be executed by the TPU. Conversely, in normal operation, only functions
contained in ROM can be executed.

All operations and conditions that apply to the control store (ROM) also apply to the RAM when
used for emulation. The memory map is the same as that shown in Figure 4-5; the timing is
identical. The only difference is that the user can program the microcode and entry point
segments of the RAM with functions.

4.2.11 Microinstruction Formats and Encodings
Due to the logistics of the emulation method, microinstruction size is limited to long word. Since
the bit count for the microinstruction encodings is much greater, microinstruction formats that
contain appropriate combinations of the encodings are necessary. Five microinstruction formats
and their encodings are shown and defined in APPENDIX B MICROINSTRUCTION
FORMATS AND ENCODINGS. Refer to Table 4-1 for a quick reference listing of the fields
and bits.

4.2.12 Microengine Timing
The microengine uses four basic clocks for timing: T1, T2, T3, and T4. These clocks are derived
from the system clock on the IMB. Each has a 25% duty cycle and a period twice the system
clock period. The sequential occurrence of these four T states (T1-4) constitutes a microcycle.
Two additional T states are derived from the system clocks: T2\ and T4\. The T2\ state occurs
when the TPU loses RAM arbitration to a bus master (see 4.4 RAM OPERATIONS). The T4\
state occurs due to a breakpoint or FREEZE condition (see 4.6 TPU MICROCODE
DEVELOPMENT SUPPORT).

MOTOROLA TPU REFERENCE MANUAL
18

A T2\ or T4\ state is defined as a wait state of one system clock period in which the T clocks
continue to run, but the control points associated with the clocks are unaffected. That is, no
operation occurs during this state. For illustration, T2\ and T4\ states are typical examples of the
bus wait state. Both T2\ and T4\ states occur in multiples of two system clocks (see Figure 4-9)
to keep the microengine synchronized with the free-running channels. Due to the pipelining of
microinstructions, latches are required for T3 and T4 controls.

Figure 4-9. Wait States

Basic timing for some of the functional units is shown in Figure 4-10. Figures 4-11 and 4-12
illustrate the timing for these units in T2\ and T4\ states. Note that the timing shown is for
registers where cross-hatched segments indicate register loads.

Figure 4-10. Microengine Timing

MOTOROLA TPU REFERENCE MANUAL
19

Figure 4-11. T2\ Timing

Figure 4-12. T4\ Timing

4.2.13 Time-Slot Transition Period
The time-slot transition period is a five-microcycle (10-clock) period between the servicing of
channels. The primary tasks completed in this period are as follows:

• Update of the CHAN register with the number of the new channel to be serviced

• Programmable update of the match register of the previous channel with ERT (specified by
last microinstruction executed)

• Update of the ERT with the capture register of the new channel

• Latching of the branch conditions of the new channel to be serviced

• Formation of the address of the entry point location

• Access of the entry point location

• Access of the first microinstruction of the state to be executed for the new channel

• Preload of a parameter

MOTOROLA TPU REFERENCE MANUAL
20

During the time-slot transition period, an NOP signal negates all signals from the decode; hence,
no microinstructions are executed during the transition. Refer to Figure 4-13 for the timing of the
time-slot transition period.

4.2.14 Microengine Data References
Table 4-2 describes the microengine tasks that require data references. This table describes the
task, indicates the location of the operand, provides the data type and size, and identifies the task
name.

The change channel, link, and set decrementor tasks are programmed with the T3ABD
microinstruction field of formats 1, 2, and 5. Selection of the channel, link, or decrementor
register as the T3 A-bus destination will result in the respective operation. However, other
execution unit microinstruction fields are necessary for specifying the A-bus and B-bus sources,
the arithmetic operation, etc. A parameter access is programmed with the microinstruction fields
IOM and AID of certain microinstructions.

MOTOROLA TPU REFERENCE MANUAL
21

Figure 4-13. Time-Slot Transition Period Timing

MOTOROLA TPU REFERENCE MANUAL
22

Table 4-2. Microengine Data References

Tasks
Address

Mode Data Type

Dat
a

Size Name
CHANGE CHANNEL:

Change to Channel Indicated by the Contents of
Immediate Field

Immediate Channel
Number

4 Immediate Channel Operation

Change to Channel Offset from the Current Channel.
The Offset is Contained in Immediate Field

Immediate Channel
Offset

4 Immediate Channel Relative Operation

Change to Channel Indicated by the Contents of a
Parameter Register

Memory
Direct*

Channel
Number

4 Direct Channel Operation

Change to Channel Offset from the Current Channel.
The Offset is Contained in a Parameter Register

Memory
Indirect*

Channel
Offset

4 Direct Channel Relative Operation

LINK:

Link to Channel Indicated by the Contents of
Immediate Field

Immediate Channel
Number

4 Immediate Link Operation

Link to Channel Offset from the Current Channel.
The Offset is Contained in Immediate Field

Immediate Channel
Offset

4 Immediate Link Relative Operation

Link to Channel Indicated by the Contents of a
Parameter Register

Memory
Direct*

Channel
Number

4 Direct Link Operation

Link to Channel Offset from the Current Channel.
The Offset is Contained in a Parameter Register

Memory
Indirect*

Channel
Offset

4 Direct Link Relative Operation

PARAMETER ACCESS:

Access Parameter Indicated by the Address in
Immediate Field

Memory
Direct*

Parameter 16 Direct Parameter Access

Access Parameter Indicated by the Address Formed
with the Concatenation of Immediate Field and the
Channel Number

Memory
Direct*

Parameter 16 Direct Channel Relative Access

Access Parameter Indicated by the Address
Contained in a Parameter Register

Memory
Indirect*

Parameter 16 Indirect Parameter Access

SET DECREMENTOR:

Set Decrementor as Specified by the Contents of an
Immediate Field

Immediate Decrement
Count

4 Immediate Decrementor Set

Set Decrementor as Specified by the Contents of a
Parameter Register

Memory
Direct*

Decrement
Count

4 Direct Decrementor Set

*All tasks using the memory direct and indirect addressing modes, with the exception of memory direct access of
parameters, require two microcycles for completion.

4.3 Execution Unit
The execution unit consists of a number of registers, functional units, and data paths. These
elements and certain decision-making capabilities that exist within the microengine evaluate and
control the resources associated with each channel to synthesize time functions. Resources
accessed by the execution unit include the match and capture registers, test configuration registers
(TCR1 and TCR2), channel number register, link logic, and parameter RAM. Refer to Figure 4-1
for a block diagram of the execution unit.

The basic timing unit for the execution unit is a microcycle (see 4.2.12 Microengine Timing). In
one microcycle the execution unit can:

MOTOROLA TPU REFERENCE MANUAL
23

• In T1, source one or two operands from various registers onto the two internal buses;

• Send the operands to the AU which, in T2, adds or subtracts them and generates one result;

• In T3, pass the result through the shifter unshifted or, with a 1-bit shift or rotate, send the
shifter result back onto one of the internal buses and into a destination register;

• In T4, write the result into a register or into parameter RAM.

Two internal buses (A bus and B bus) within the execution unit transfer data between the registers
and functional units. Depending upon the function, each of the registers and functional units can
read and/or write one or both of the internal buses. In addition, some of the registers have access
to buses, which access various resources outside of the execution unit, e.g., parameter RAM, link
logic, etc. Both internal buses and most registers and functional units within the execution unit
are 16 bits wide. The following registers and functional units are discussed in subsequent
paragraphs.

• Arithmetic Unit (AU) - 16 bits

• Arithmetic Unit Shifter (AU shifter) - 16-bit shift and rotate

• Shift Register (SR) - 16 bits

• Preload Register (P) - 16 bits

• Data Input/Output Buffer (DIOB) - 16 bits

• Accumulator (A) - 16 bits

• Event Register Temporary Register (ERT) - 16 bits

• Decrementor (DEC) - 4 bits

• Channel Number Register (CHAN) - 4 bits

• Encoded Link Register (LINK) - 4 bits

The formats and encodings of the microinstructions used to accomplish these functions are listed
in APPENDIX B MICROINSTRUCTION FORMATS AND ENCODINGS. The operations
performed are summarized as follow:

• A-bus byte operand source may be P (either upper or lower byte), DEC, CHAN, or zero.
Word operand source may be P, A, SR, DIOB, TCR1, TCR2, ERT, or zero.

• B-bus word operand source may be from P, A, SR, DIOB, or constants, $8000 or $0000.

• A-bus destination may be A, SR, ERT, DIOB, P (either byte or full word), LINK, CHAN,
DEC, TCR1, TCR2, or no destination.

MOTOROLA TPU REFERENCE MANUAL
24

4.3.1 Arithmetic Unit (AU)
The arithmetic functions that the AU performs include add and subtract of 8- or 16-bit operands.
The data to be operated upon is placed on the internal buses during T1. Two 16-bit latches, one
connected to each of the two internal buses, retain the data for AU operation in T2. The result of
the AU operation is placed on the A bus during T3 to be loaded into a destination register.

Constants, which may be generated for input to the AU, include one ($0001), zero ($0000),
negative one ($FFFF), and $8000. The operations performed by the AU are as follows:

0 + 0 Clear

0 + BBus Pass B

0 + BBus + CIN Increment B

0 + BBus\ Ones complement of B

0 + BBus\ + CIN Negate B

ABus + 0 Pass A

ABus + 0\ + CIN Increment A

ABus + 0\ ($FFFF) Decrement A

ABus + $8000 A + Max. parameter offset

ABus + BBus Add (see Note 2)

ABus + BBus\ + CIN Subtract
NOTES:
1. BBus\ = Ones complement or inversion
2. If, and only if, the SR and the AU shifter are both enabled to shift and DEC is decrementing, will the B-bus

input to the AU be the content of the B-bus or zero as determined by the least significant bit of SR = 1 or 0
respectively. This operation effects a multiply of the B-bus by the content of the SR.

Certain status flags from an AU operation may be utilized by the microengine for the purpose of
branching. These flags include a zero result (Z), a negative result (N), an overflow result (V), and
a carry out (C).

AU flags are calculated based on either both bytes of the result or the lower byte of the result,
depending on whether a word or byte operation is executed.

• The C and V flags always reflect the result of the AU.

• Z and N always reflect the output of the AU shifter.

For example, if the AU result is shifted right in the shifter, C and V are calculated based on the
AU result, and Z and N are calculated based on the right-shifted AU result output.

For AU result flag calculation, byte operations are distinguished as follows:

MOTOROLA TPU REFERENCE MANUAL
25

• The destination is a byte of the P register; or

• The sources are a byte of a register and an immediate value, with or without a destination
specified, i.e., the encodings for TLABS are 0000, 0001, 0010, 0011, 0111, or 0100 with
T1BBI specifying the appropriate immediate data.

Otherwise, the AU operation is considered to be word. Also, if the AU shifter is shifting (either
right, left, or rotate) then the C calculation is considered to be a word operation.

Z and N flags are calculated as follows:

Z = S0 • S1 • S2…• Sm
N = Sm

where:

S0, S1 ... Sm = AU-shifter output

m = AU-shifter output bit 15 for a word operation or AU-shifter output bit 7 for byte operation

Figure 4-14 shows C and V calculation for byte/word AU operations.

MOTOROLA TPU REFERENCE MANUAL
26

Figure 4-14 . Carry and Overflow Calculation for Word/Byte Operation

4.3.2 AU Shifter

The output of the AU reaches the A bus through a 16-bit shifter. This shifter allows for shifting
or rotating of the output by one bit position before being gated onto the A bus. Normally, the
shifter passes the output of the AU to the internal A bus without performing a shift or rotate
operation. If a shifter option is selected, the procedure used for filling the vacant bit is described
as follows:

• When a left shift is selected, a binary zero will be gated onto bit 0 of the A bus.

• When a right-shift is selected, then the least significant bit of the AU output will be available
to the input of the SR bit 15 (SR15). If the SR is also shifting, then carryout from the AU
will be gated onto bit 15 of the A bus. Otherwise, a binary zero will be gated onto bit 15 of
the A bus.

• When a right rotate is selected, bit 0 of the AU output will be shifted onto bit 15 of the A bus.

The shifter, therefore, includes these functions:

MOTOROLA TPU REFERENCE MANUAL
27

• T3 No shift

• T3 Right shift AU carryout onto A15

• T3 Right rotate AU0 onto A15

• T3 Left shift Zero onto A0

4.3.3 Shift Register (SR)
SR is a 16-bit general-purpose register that also may shift right one bit position per microcycle.
When SR is enabled for shifting and the AU shifter is also enabled to shift right, the least
significant bit of the AU shifter output is shifted into SR15, effecting a 32-bit shift.

In the combined condition when the SR is shifting, the AU shifter is right shifting, and DEC is
decrementing, the least significant bit of SR will control the B-bus input to the AU. If SR0 = 1,
the contents of the internal buses are added. If SR0 = 0, the content of the A bus is passed, i.e.,
add zero to A bus.

The SR performs the following functions:

• T1 Read (output) to A0-A15.

• T1 Read (output) to B0-B15.

• T3 Write (input) from A bus.

• T3 Right shift; (no bus in/out)

If AU shifter not shifting, SR15 = 0

Else SR15 = least significant bit of AU shifter.

4.3.4 Preload Register (P)

P, a 16-bit general-purpose register, interfaces to the parameter RAM and to certain control
latches of the channels as a data register with read and write capability. P may be preloaded
during the time-slot transition period with one of the parameter RAM locations associated with
the channel requesting service. The parameter, which is preloaded, is described in 4.2.2 Entry
Point Format.

The contents of P can be a source to either the A bus or B bus, and P can be a destination for the
A bus. In byte operations, either byte of P can be a source or a destination to the lower byte of
the A bus.

• T3 Write (input) from A7-A0.

• T3 Write (input) P7-P0 from A15-A0.

MOTOROLA TPU REFERENCE MANUAL
28

• T3 Write (input) P15-P8 from A7-A0.

• T1 Read (output) P7-P0 to A7-A0 (A15-A8: = 0).

• T1 Read (output) P15-P8 to A7-A0 (A15-A8: = 0).

• T1 Read (output) P15-P0 to B15-B0.

• T4 Read RAM to P15-P0.

• T4 Write P15-P0 to RAM.

• T2 Write P8-P0 to channel configuration control latches.

4.3.5 Data Input/Output Buffer Register (DIOB)

DIOB, a 16-bit general-purpose register, is also used by the execution unit to interface to the
parameter RAM. It interfaces as both a data register, with read and write capability, and an
address register. Bits 7-1 can be used to address the parameter RAM. In this usage, parameter
registers can be read from the RAM into either P or DIOB and written to the RAM from P.

DIOB or P may be preloaded during the time-slot transition period with one of the parameter
RAM locations associated with the channel requesting service. The parameter, which is
preloaded, is described in 4.2.2 Entry Point Format.

• T1 Read (output) to A15-A0.

• T1 Read (output) to B15-B0.

• T3 Write (input) from A15-A0.

• T4 Read RAM, write to DIOB.

• T1 Write RAM, read from DIOB (T1 of next microcycle).

• T2 DIOB7-DIOB1 used as RAM address.

4.3.6 Accumulator Register (A)

A, a general-purpose 16-bit register in the execution unit, has access to both internal buses. Its
primary function is as an accumulator for storing the result of the AU operation.

• T3 Write (input) from A bus.

• T1 Read (output) to B bus.

• T1 Read (output) to A bus.

MOTOROLA TPU REFERENCE MANUAL
29

4.3.7 Event Register Temporary (ERT) Register

ERT contains a copy of the capture register for the channel currently being serviced. Before the
servicing of a channel or when the channel to be serviced is changed via microcode, the content
of the selected channel’s capture register is automatically written into ERT. Via microcode, ERT
can also be loaded with the match register contents of a channel, or ERT can load the match
register of a channel. When a new channel number is written into CHAN via microcode to
service a different channel, the contents of ERT represent the old channel for the next two
microcycles and represent the new channel on the third microcycle following the change channel
operation. Availability of various TPU attributes following a change of CHAN contents is
presented in Table 4-3.

Table 4-3. Change of CHAN Register

Feature Used Microcycle
n n + 1 n + 2 n + 3

Write Channel Register Chan := xxxx New New New
RAM Commands Using Chan Old New New New
Branch Using Pin State or Channel Flags Old Old New New
Branch on All Other Conditions Old Old Old Old
ERT Value Old Old Old New
Channel Commands: Neg_MRL, Neg_TDL, TBS,
PAC, PSC

Old New New New

Channel Command Write MER Old Do Not Write New New
Channel Command Read MER Old Old Do Not Read New
Channel Commands Set/Clear Channel Flags, etc. Old Old New New
Negate Link, Set PIR Old Old Old Old

• T3 Write (input) from A bus.

• T1 Read (output) to A bus.

• T2 Copy ERT into capture register.

• T2 Copy match register into ERT.

• T2 Copy capture register into ERT.

4.3.8 Registers Affecting Microengine
Three registers, CHAN, DEC, and LINK, allow the execution unit to alter the flow of the
microengine.

4.3.8.1 Channel Number Register (CHAN)

CHANNEL NUMBER REGISTER (CHAN). During the time-slot transition period, this 4-bit
register is initialized by the scheduler to the number of the channel receiving the time slot.
CHAN can also be changed via microcode to initiate a sequence of events. One such event is the
update of ERT with the capture register of the new channel selected. The new pin state and

MOTOROLA TPU REFERENCE MANUAL
30

contents of ERT are valid on the third microcycle following the channel change (see 4.2.4
Branch PLA and Table 4-3).

CHAN is used by the microengine for addressing the parameter RAM and for relative linking, in
addition to the expected use of selecting channel for service. it is accessed on bits 7-4 of the A
bus and is initialized to $0 at reset.

• T3 Write (input) from A7-A4.

• T1 Read (output) to A7-A4.

• T1 Write (input) from scheduler.

4.3.8.2 Decrementor (DEC)

Consists of a 4-bit counter with control. DEC is accessed on bits 3-0 of the A bus and may be
loaded with a value from $0 to $F; $1-$F represents values 1 to 15, respectively; $0 represents
16. When decrementing, DEC decrements once per microcycle.

When DEC is loaded with a value and started, it decrements to one, indicates this occurrence to
the microengine for interpretation, and is then set to $F, which ensures that DEC is always preset
to $F for the next usage. During the time-slot transition period and at reset, DEC is also
initialized to $F.

DEC has two modes of operation. In the repeat mode when DEC is enabled to decrement, the
µPC does not increment, which allows for the repeated execution of a microinstruction that
results in shifting or some other repetitive operation. The number of times a microinstruction is
executed in this mode equals the initial value of DEC + 1; therefore, values from $1 to $F repeat
2 to 16 times, and $0 repeats 17 times.

In the subroutine mode, the µPC continues to count normally while DEC decrements but, when
DEC reaches one, the return address register contents are copied into µPC. This mode allows
exiting from a subroutine after a predetermined number of microcycles have been executed. In
this mode, DEC can be changed within the subroutine to effect an earlier or later exit. The
number of microcycles for which microinstructions can be executed in this mode equals the initial
value of DEC; therefore, values from $1 to $F execute 1 to 15 microcycles, and a value of $0
executes 16 cycles.

• T3 Write (input) A3-A0 to DEC3-DEC0.

• T1 Read (output) DEC3-DEC0 to B3-B0 (B15-B4 := 0).

• T4 Decrement.

4.3.8.3 Encoded Link Register (LINK)

LINK is a 4-bit register used for generating "links" by asserting the link-service-request bit of a
channel. Writing an encoded channel number to LINK initiates a procedure in which the link.

MOTOROLA TPU REFERENCE MANUAL
31

service-request bit is asserted for the channel number written to LINK. This register is initialized
to $0 at reset.

• T3 Write (input) from A7-A4.

• T1 Read (output) to A7-A4.

• T1 Read (output) to scheduler.

4.3.9 Miscellaneous

The execution unit can also use 8-bit immediate values supplied by the microinstruction.
Immediate values are placed directly onto the B bus during T1. TCR1 and TCR2 are also
readable by the execution unit for arithmetic computations with parameters and are writable for
testing purposes. These Miscellaneous functions are as follows:

• T1 Immediate value from control store to B7-B0 (B15-B8 := 0).

• T1 Read TCR1 15-0 to A15-A0.

• T1 Read TCR2 15-0 to A15-A0.

• T3 Write A15-A0 to TCR1 15-0.

• T3 Write A15-A0 to TCR2 15-0.

• T3 Write A7-A4 to link logic.

4.4 RAM Operations

Transfers may be performed between the parameter RAM registers and the execution unit
registers, P and DIOB, by using encoding in the RW, IOM, and AID fields of the microword. A
load from RAM to P/DIOB is prefetched in one microcycle for execution unit operations in the
next microcycle. Execution unit operations are completed in T3, allowing a result to be stored
into RAM at T4 of the same microcycle.

Operations performed between the RAM and P or DIOB are as follows:

• Load (write) or store (read) P using RAM address formed by CHAN register concatenated
with AID (2:0).

• Load (write) or store (read) P using RAM address from AID (6:0).

• Load (write) or store (read) P using RAM address from DIOB (7:1).

• Load (write) or store (read) DIOB using RAM address formed by CHAN concatenated with
AID (2:0).

MOTOROLA TPU REFERENCE MANUAL
32

• Load (write) or store (read) DIOB using RAM address from AID (6:0).

• Load (write) or store (read) DIOB using RAM address from DIOB (7:1).

4.4.1 RAM Accesses

Access to the parameter RAM is shared between the TPU and IMB bus masters, such as the CPU.
Since the parameter RAM may be accessed by only one source at a time, an arbitration scheme
prevents simultaneous accesses but allows access to all requesters in turn. In general, long-word
CPU accesses are coherent, and every successive pair of TPU accesses is also coherent. The
following rules regulate RAM access:

• The TPU asserts the TPU RAM request latch during the T2 state.

• The TPU negates or maintains the request during the subsequent T2 states.

• The TPU arbitrates during either T2 or T4 when the RAM is not being accessed.

• The TPU is granted access during a T2 state.

• The IMB master requests access for B1-B4 cycle during the B1 state.

• The IMB master maintains request until the subsequent B4 state.

• The IMB master arbitrates during B1 or B3 when the RAM is not being accessed.

• The IMB master is granted access during a B3 state.

• The IMB master does not relinquish access until one data transfer (word or long word) is
complete.

• While the TPU is waiting for access, it executes T2\ wait states. The TPU always waits a
multiple of two wait states.

• While the IMB master is waiting for access it executes B3\ wait states.

The CPU has priority for the RAM when:

1. The TPU has completed a data transfer during the last access; or

2. The RAM was not being accessed during the last arbitration period; or

3. The CPU is arbitrating for the second word access of a long-word transfer.

The TPU has priority for the RAM when:

1. The CPU has completed a data transfer during the last access; or

MOTOROLA TPU REFERENCE MANUAL
33

2. The TPU is arbitrating for the second access of a data transfer in which no TPU access
occurred in the microcycle prior to the first access of the current data transfer. (A data
transfer is defined as word or long-word access.)

Many scenarios exist for accessing the parameter RAM, several of which are shown in Figures 2-
5a and 2-5b. These figures illustrate word accesses by a host, such as the CPU, and word or long-
word accesses by the TPU.

4.5 Channel Control Operations

The channel control hardware is configured by the microengine to determine the relationship
between the activity at each channel pin and the two TCRS. Figure 4-15 illustrates a functional
block diagram of the channel control hardware. Reference to this diagram will help clarify the
interaction of the event register, control signals, the 1/0, and other channel features.
Microinstruction formats and encodings are found in APPENDIX B MICROINSTRUCTION
FORMATS AND ENCODINGS.

4.5.1 Channel Operation

The major features of a TPU channel are presented in the following list, which introduces some
new terminology. Most new terms are discussed in detail on the following pages.

• The event register can be accessed once per microcycle.

• Assertion of the transition detect latch inhibits the assertion of the match recognition latch
until the transition detect latch is negated.

• Service requests caused by the assertion of the match request latch or transition detect latch
may be blocked, allowing input transition capture events to be received at a very high rate.

• The value of the event register temporary (copy of event register) is correlated to the state of
the transition detect latch and/or the match request latch and to the pin state.

• All inputs must be valid for at least four clock periods after transition to be recognized as
valid. (Inputs are debounced with synchronizers and digital filtering to reject inputs less than
four clocks in duration.)

• The match request latch has an interlock mechanism requiring a write to the match register of
the event register before additional match events can assert the match request latch.

• To minimize microcode when changing pending matches, assertion of the match request latch
may be inhibited during service. This latch may be selectively enabled to allow assertion
during the time slot by a bit in the entry point on a per-state basis.

• Update of the match event register and negation of the match request latch, transition detect
latch, and the link-service-request sources are done coherently to prevent inadvertent
matches.

MOTOROLA TPU REFERENCE MANUAL
34

Figure 4-15. Channel Block Diagram

Each channel is composed of three logical sections: the event register, the latch control, and the
pin control. They perform the following functions:

1. The event register is the hardware through which the microengine references the time
associated with an event on a channel.

MOTOROLA TPU REFERENCE MANUAL
35

2. Latch control retains information concerning the occurrence of events on a channel. It also
issues service requests for that channel to the scheduler. The microengine accesses the latch
control during a time slot to determine the state of the channel, to control the occurrence of
events, and to control the negation of certain latches within a channel.

3. Pin control is the hardware through which a capture event is interpreted from a specified pin
action or a match event is translated into a specified pin action.

The microengine is synchronized with channel timing when the channel is accessed by the
microengine. The microcycle consists of four ticks, T1-T4, or two TPU system clocks. The
resolution period (equivalent to two microcycles) consists of four resolution states (RS1-RS4).
Channel timing is shown in Figure 4-16.

Table 4-4 shows the reset state for various channel controls and latches. Refer to Table 2-3
CHANNEL CONTROL Options for pin state control and pin action control details.

Table 4-4. Reset State for Channel Controls and Latches

Channel Controls and Latches Reset State
Match Recognition Latch (MRL) Negated
Match Recognition Latch Enable
(MRLE)

Negated
Inhibits Assertion of MRL

Transition Detect Latch (TDL) Negated
Match/Transition Service Request Inhibit
(SRI) Latch

Asserted
Inhibits MRL and TDL Service Requests, (But Not Assertion of

MRL or TDL Latch)
Match Time Base Use TCR1
Capture Time Base Use TCR1
Pin Action Control (PAC) No Transition Will Be Detected
Pin Directionality Input

4.5.2 Event Register

Each channel has an ER, which is composed of one 16-bit greater-than-or equal comparator, one
16-bit compare/match register, and one 16-bit capture register. ERs are capable of performing
two kinds of events: match and capture. The ER comparator is used to perform a greater-than-or-
equal compare of a specified TCR against the contents of the match register to generate match
events. The ER capture register is used to capture a specified TCR as a result of a specified input
transition or a match event. The match register may be either read or written; whereas, the
capture register may only be read. The CPU may not directly access an ER. CPU access of the
information in ERs is provided through the parameter registers by the particular time function
executing on the channel.

To provide for simultaneous match and capture on all channels, two TCR buses traverse all
channels. In addition, a TPU ER bus runs through all channels to provide microengine access to
the ER of each channel.

4.5.2.1 TCR Interface
All events are associated with a known time base. In the TPU, time is traced by referencing all
events to either of two free-running TCRS. TCR1 is clocked from the output of a prescaler that

MOTOROLA TPU REFERENCE MANUAL
36

allows clocking rates from (system clock/4) to (system clock/256). TCR2 is clocked from the
output of a prescaler that is clocked by an external source via the TCR2 pin. This clocking is
synchronized to the RS1 resolution state after a rising edge at the TCR2 pin as shown in Figure 4-
16. A minimum delay of 13 ticks (6.5 system clocks) to a maximum delay of 17 ticks (8.5 system
clocks) is required from the time a rising-edge transition is detected at the TCR2 pin until the
timer TCR2 is incremented, assuming the TCR2 prescaler is configured to divide by one.
Alternatively, the TCR2 pin can act as a gating signal in which an internal clock drives the
prescaler associated with TCR2 whenever the TCR2 pin is high. TCR1 and TCR2 are gated onto
their appropriate bus during T2 of RS1. Because of the subtleties of bus timing, if a TCR is
written in one microcycle and read in the next, the old value is read. Inputs to the TCR2 pin must
be valid for at least four clock periods after transition to be recognized as valid. (Inputs are
debounced with synchronizers and digital filtering to reject inputs less than four clocks in
duration.)

Figure 4-16. Channel Control Timing

4.5.2.2 TPU Interface

The capture register is read onto the TPU E bus and is automatically latched into the ERT register
(execution unit) during the channel transition period whenever the CHAN register (execution
unit) is modified. Access of an ER is qualified by the channel currently being serviced by the
microengine (i.e., the channel value currently in CHAN). To access the ER of a channel other
than the channel currently selected, the microcode must modify CHAN to the channel number of

MOTOROLA TPU REFERENCE MANUAL
37

the channel to be accessed. ERT is then automatically loaded with the capture register of the new
channel. All microengine accesses of ER are limited to state T2 of the microcycle.

4.5.2.3 Match Event

A match event may only occur after a write to a channel match register. The match primitive is
performed every resolution period by comparing the match register of a channel’s ER against the
value of the specified TCR. A match event is the condition in which the specified TCR
increments to a value that is equal to or greater than that of a channel’s match register, which
asserts the match recognition latch (MRL). This condition also requires that the match enable
latch (MEL) for the channel currently receiving service is enabled. A description of these latches
is presented in 4.5.3 Latch Control. Once a match event occurs, a new one cannot occur until
after a subsequent write to the match register. The time base used for a match event is
nonexclusive, i.e., either TCR1 or TCR2 can be the reference time base. A match is conditioned
by resolution states RS2 and RS3 (see Figure 4-16).

If the sum of the match register and the two’s complement of the match TCR result in bit 15 is
one, then the current match TCR time is greater than or equal to the match register. When a value
is written to a match register, within one resolution period, a greater-than-or-equal-to compare is
made. If the time stored in the match register is less than the TCR, then no further action occurs
until the TCR increments to the value contained in the match register. If the time stored in the
match register is greater than or equal to the TCR-, then the channel immediately forces the pin
state as specified by pin action control latches.

4.5.2.4 Capture Event

A capture event is the condition in which the value of a specified TCR is gated into the capture
register. A capture may be initiated by two different occurrences: the assertion of MRL or a
specified input transition at the pin (transition detect latch (TDL) asserted). A capture caused by
a match occurs in resolution state RS4. A capture event caused by an input transition occurs in
resolution state RS2 or RS4. Figure 4-16 depicts these two occurrences.

4.5.3 Latch Control

Latch control refers to those latches affecting the operation of the ER and/or the channel service
requests (match and capture). These controls are the match recognition latch, match enable latch,
match recognition latch enable, transition detect latch, and the match/transition service request
inhibit latch.

4.5.3.1 Match Recognition Latch (MRL)

MRL indicates the occurrence of a greater-than-or-equal-to match event. Assertion of MRL
initiates a service request to the scheduler unless the match/transition service-request-inhibit
(SRI) latch is asserted. When MRL is asserted, the level specified by the pin action control
latches is output to the associated channel pin during T2 of RS3, and a capture occurs.

Once MRL has been asserted and then negated, it cannot be asserted again until its associated
match register has been written. Also, after reset, the match register must be written for MRL to
be asserted.

MOTOROLA TPU REFERENCE MANUAL
38

Assertion of MRL is inhibited by assertion of TDL. This inhibit ensures that no subsequent
match will initiate a capture until TDL is negated. Assertion of MRL is also inhibited by MEL.

4.5.3.2 Match Enable Latch (MEL)

MEL selectively enables assertion of MRL for the scheduled channel during service. When
channel service occurs (as the result of either a link or a host request) while a match is pending,
MEL selectively enables the assertion of the MRL. In many cases without MEL, significant
microcode overhead would be required to prevent an output pin glitch as a result of MRL being
asserted due to a previously scheduled match while trying to extend a pulse width. A bit in the
entry point allows selective enabling of MRL for each state. (See 4.2.2 Entry Point Format.)

4.5.3.3 Match Recognition Latch Enable (MRLE)

MRLE is negated when TDL is asserted. This is to ensure that data captured due to the specified
transition is not overwritten, a condition which occurs when a match event is used as a timeout.
Writing the match register to schedule the next match sets MRLE and enables matches.

4.5.3.4 Transition Detect Latch (TDL)

TDL indicates a specified transition occurrence on a channel whose associated pin is configured
as an input. TDL initiates a capture event and a service request to the scheduler if SRI control is
not asserted. Assertion of TDL can occur on any T2 of a microcycle.

This latch is negated during reset and may also be negated by the microengine. If the SRI bit is
asserted, TDL will be negated and will not be asserted even if the specified transition occurs at
the pin. However, the specified TCR is captured in the channel capture register.

4.5.3.5 Match/Transition Service-Request Inhibit (SRI) Latch

SRI blocks channel service requests due to the assertion of MRL and/or TDL. SRI does not
affect recognition of link service requests or host service requests. It is asserted during reset and
may be written by the microengine. Assertion of this control latch also negates MRL and TDL.

To unburden the microengine, SRI configures a channel "dumb" regarding the servicing of match
and capture channel service requests. MRL can still be asserted, and the level specified by the
pin action control latches will be output to the pin. For inputs, the TDL is transparent, and so the
last specified transition always causes a capture event.

4.5.4 Pin Control and TPU Pins

Any TPU pin may be programmed to be either an output or an input via microcode. Pin control is
provided by three fields of a channel parameter register: pin action control (PAC), pin state
control (PSC), and time/base directionality control (TBS). These fields are detailed in 2.3.2
Channel Parameter Registers-Channel Configuration Control.

4.5.4.1 Output Pin

The host CPU may affect the logic level of an output pin by implementing one of three actions:

MOTOROLA TPU REFERENCE MANUAL
39

1. Specify the logic level output to the pin when MRL asserts. PAC is programmed to output
high, low, or toggle logic levels with assertion of the MRL.

2. Immediately force a logic level previously programmed into PAC.

3. Force the output logic level of the pin directly to high or low.

Data contained in a parameter may also be used to affect PAC, PSC, and TBS.

4.5.4.2 Input Pin

As an input pin, the microcode can directly control the effect of the transition edge. PAC can be
programmed to cause TDL to be asserted when a rising and/or falling edge is detected.

The TCR2 pin and each channel configured as an input has an associated synchronizer followed
by a digital filter connected to the pin that samples pin transitions. These filter out high and low
pulse widths less than the period of two system clocks, preventing these transitions from being
input to the transition detect logic. The synchronizer and digital filter are guaranteed to pass
pulses that are greater than the period of four system clocks. A minimum delay of seven ticks
(3.5 TPU system clocks) to a maximum delay of 11 ticks (5.5 TPU system clocks) is required
from the time the specified transition occurs at a pin until assertion of TDL on that channel.

4.6 TPU Microcode Development Support

The TPU contains a number of hardware hooks that aid in the development of microcode. The
following paragraphs describe the development support hooks supplied in the TPU. For a quick
reference of the register bits and fields discussed on subsequent pages, refer to Table 2-2
Bit/Field Quick Reference Guide.

The TPU provides extensive support for a development mode of operation when the chip is in test
mode (refer to standby RAM (with TPU emulation) descriptions in the MC68332 user’s manual,
document number MC68332UM/AD (formerly MC68332 SIM User’s Manual). This support
includes:

1) the capability to halt TPU microcode execution at the end of a microcycle as a result of one
of several breakpoint sources, both internal and external to the TPU,

2) the capability for the bus master to examine and/or modify most internal resources available
to the TPU microengine,

3) the capability to single step the TPU microengine,
4) the capability to change the µPC and microinstruction register, thus altering the flow of the

microprogram, and
5) the capability to execute microcode from a source external to the TPU via a test scan path.

Microcode development support has two registers: the development support control register and
the development support status register. The development support hooks are configured through
the development support control register. This register controls the enabling of internal
breakpoints, TPU response to the IMB FREEZE signal, µPC latching characteristics, TCR
stopping and starting, etc., and indicates their status to the bus masters.

MOTOROLA TPU REFERENCE MANUAL
40

TPU resources available to the bus master while the TPU is in the halted state include the
parameter RAM and all system registers normally available. In addition, the link, service grant
latch, and decoded channel registers, as well as most registers in the microengine and execution
unit, are available to the bus master.

TPU execution of microcode can be halted due to two types of breakpoint sources: internal and
external. Internal breakpoints may be generated by comparing for the channel of service, the
address of the µPC, or the service request sources on a channel. The external breakpoint sources
are the IMB FREEZE signal and the HOT4 bit in the development support control register. The
halted state is identical to the T4\ state described in 4.2.12 Microengine Timing.

TPU microinstruction execution can be halted because of one or more breakpoints on the
following: the µPC register, the CHAN register, and the four service request sources.

The TPU contains a nine-bit µPC breakpoint register and a 4-bit channel number breakpoint
register. These registers halt the TPU whenever the µPC register and CHAN register,
respectively, are equal to the contents of the breakpoint registers. The TPU can also be halted by
any combination of the four service requests. Any or all of the internal breakpoint sources can be
enabled via the development support control register.

Both breakpoint registers are loaded and read using the test mode serial scan paths in the TPU.
By necessity, the TPU serial scan paths are only accessed in test mode by using logic in the test
submodule. (Refer to test scan path descriptions in the MC68332 user’s manual (formerly
MC68332 SIM User’s Manual) document number MC68332UM/AD). As a result, the breakpoint
registers are not contained in the memory address map and are, therefore, not directly accessible
to the CPU. The breakpoint registers are set to zero out of reset.

Whenever any type of breakpoint is taken within the TPU, the BKPT bit in the development
support status register is asserted by the TPU. Assertion of the breakpoint bit asserts the IMB
BRKPT signal. The TPU subsequently negates BRKPT when a breakpoint acknowledge bus
cycle occurs or the FREEZE signal is asserted.

TPU microcode execution can be halted when the FREEZE signal or the HOT4 bit is asserted. If
FREEZE is asserted, the user can halt TPU execution either at the end of the next microcycle, at
the end of the current state, or ignore FREEZE and continue executing. Once the TPU is halted,
it remains halted until FREEZE is negated. If the HOT4 bit is asserted, the TPU halts at the end
of the current microcycle and remains halted until HOT4 is negated.

Once the TPU is halted as a result of an internal or external breakpoint, the user can single step
the TPU on a microcycle basis. Single stepping causes the TPU to begin execution from the
halted state, execute one microinstruction, and then halt again. This control enables the
microcoder to trace the flow of a microprogram and examine the TPU’s resources between the
execution of every microinstruction.

Another use of the single-step feature is the execution of microinstructions from a test scan path.
Using the test scan path into the microinstruction register, the user can load the microinstruction
register while the TPU is in the halted state. After loading the microinstruction register, the user
can then single step the TPU, which is useful for gaining access to the TPU resources in the
execution unit.

MOTOROLA TPU REFERENCE MANUAL
41

After the TPU has halted due to an internal or external breakpoint, the user can alter the flow in a
microprogram being executed by changing the µPC contents via a test scan path. Once the µPC
has been changed, the user can single step the TPU or resume normal execution using the new
contents of the µPC.

Once the TPU is halted, the bus master can access all TPU resources needed for microcode
development in one of two ways: via a standard IMB bus cycle or via a test scan path. Accessing
certain resources may require a combination of both methods. The CPU may access certain
registers and functional units using the test serial scan paths. These registers and functional units
are the µPC register, microinstruction register, the two breakpoint registers, the branch PLA, and
the scheduler PLA.

Scanning into the microinstruction register allows the user to execute microcode from an external
source. Using this feature, the CPU can gain access to the remaining resources in the TPU.
Access includes all registers in the execution unit and the match and capture registers in any
channel. All of these registers may be transferred to the parameter RAM.

4.6.1 Test Configuration Register

The TPU module has one test register to configure and control the module for test purposes. This
register resides in supervisor data space. Access to this register is also qualified by the MCU
being in test mode. When read from supervisor data space in nontest mode, the test register reads
as $0000. In addition to using this register for testing the TPU, a test submodule, described in the
MC68332 user’s manual (document number MC68332UM/AD (formerly MC68332 SIM User’s
Manual)) is extensively used in testing the TPU module.

TCR $YFFE02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 INCAD TCR1C ACUTR1 ACUTR0 0 0 SOSEL2 SOSEL1 SOSEL0 SISEL2 SISEL1 SISEL0 TMM

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BITS 15-13, 8, 7 - Not Implemented

INCAD - Increment Address
When set, INCAD forces the µPC to increment once for each assertion of the ACUTL line. This
feature is used to sequentially dump the microROM. This bit can be read or written in test mode
only.

0 = Normal operation
1 = µPC increments

TCR1C - TCR1 Clock
TCR1C selects the clock source, internal or external, for TCR1 (see Figure 4-17). This bit can be
read or written in test mode only.

0 = Normal operation (TCR1 clocked internally)
1 = TCR1 clocked externally via the TCR2 pin; TCR1 is now clocked in parallel with TCR2.

MOTOROLA TPU REFERENCE MANUAL
42

Figure 4-17. TCR1 Control Structure

ACUTR1, ACUTR0 - Activate Circuit Under Test Response 1, 0
The ACUTR bits determine the TPU module response to the test submodule asserting ACUT
only. These bits can be read or written in test mode only.

ACUTR1 ACUTR0 TPU Response
0 0 None
0 1 Run one TPU microcycle. This setting is used to single step the TPU.
1 0 Assert scheduler end-of-time slot signal. This setting is used to test the HS PLA.
1 1 Reserved

SOSEL2-SOSEL0 - Scan-Out Select 2-0
These bits define the TPU output scan path to be connected to master shift register B (MSRB) via
the SCANB line. MSRB is located in the test submodule and captures test responses from the
TPU module. These bits can be read or written in test mode only.

SOSEL2 SOSEL1 SOSEL0 Output Scan Path
0 0 0 None
0 0 1 (µPC)
0 1 0 (Microinstruction)
0 1 1 (Branch PLA)
1 0 0 (µPC Breakpoint)
1 0 1 (Scheduler PLA)
1 1 0 (Channel Breakpoint)
1 1 1 Reserved

SISEL2-SISEL0 - Scan-in Select 2-0
The bits define the TPU input scan path to be connected to master shift register A (MSRA) via
the SCANA line. Located in the test submodule, MSRA scans test stimulus from the test
submodule to the TPU module. These bits can be read or written in test mode only.

SISEL2 SISEL1 SISEL0 Input Scan Path
0 0 0 None
0 0 1 (µPC)
0 1 0 (Microinstruction)
0 1 1 (Branch PLA)
1 0 0 (µPC Breakpoint)
1 0 1 (Scheduler PLA)
1 1 0 (Channel Breakpoint)
1 1 1 Reserved

MOTOROLA TPU REFERENCE MANUAL
43

TMW-Test Memory Map
TMM permits placing the TPU module at a fixed memory map location, which allows
development of test patterns that are independent of the user memory map. This bit can be read
or written in test mode only.

0 = Normal memory map (defined in the MG68332 users manual, formerly MC68332 SIM
User’s Manual)

1 = Module located at $YDF000-$YDFFFF. Figure 4-18 illustrates the test memory map of
a 512-byte TPU. The TPU registers are mirrored in multiple locations in the range $YMDFxxx
(Y = m111 where m reflects the state of the modmap bit in the module configuration register of
the system integration module (Y = $7 or $F)).

Figure 4-18. 512-Byte TPU Test Memory Map

4.6.2 Development Support Control Register

The development support control register controls the starting and stopping of the TPU
microengine as a result of various internal and external events. Events causing the TPU to halt
execution are described in more detail in 4.6 TPU MICROCODE DEVELOPMENT
SUPPORT.

This register resides in supervisor data space. Access to this register is also qualified by the MCU
being in test mode (IMBTST asserted on IMB). When read from supervisor data space in nontest
mode, this register reads as $0000 and returns a DTACK. During reset this register is initialized
to $0000.

DEVELOPMENT SUPPORT CONTROL REGISTER $YFFE04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HOT4 0 0 0 0 BLC CLKS FRZ0/FRZ1 CCL BP BC BH BL BM BT
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HOT4 - Hang on T4
When asserted, HOT4 causes the TPU to enter a T4\ wait state when the subsequent T4 state
occurs. Negating this bit releases the TPU from the wait on T4\ state.

0 = Exit wait on T4 state caused by assertion of HOT4

MOTOROLA TPU REFERENCE MANUAL
44

1 = Enter wait on T4 state

Bits 14-11 - Not Implemented

BLC - Branch Latch Control
This bit is intended for scanning in specific conditions in test mode, with the TPU halted. The
effect of the BLC bit falls into three categories, according to the type of branch condition. Some
conditions are latched only during time-slot transition, some conditions are latched both as a
result of microcode and during time-slot transition, and some conditions are latched only as a
result of microcode. Branch conditions latched during time-slot transition (first two cases) are
also latched according to the following mechanisms:

1. Channel flags of the current channel are latched as specified by the FLC microinstruction
field.

2. The pin state is latched whenever the channel register is changed via microcode (to reflect
new channel’s pin state).

3. If CCL = 1, MRL and TDL are latched whenever the channel register is changed via
microcode.

The execution unit conditions (such as AU branch conditions) are latched only as specified by the
by the CCL microinstruction field (latter or third case).

BLC specifies whether new branch condition information is to be latched (BLC = 0) or branch
condition information scanned in during the halted state (BLC = 1) is to be retained, only for the
first microcycle after exiting the halted state.

1 = Do not latch conditions into branch condition register prior to exiting the
halted state or during the time-slot transition period.

0 = Latch conditions into branch condition register prior to exiting halted
state.

When new branch information is scanned in during the halted state, BLC should be set to one,
allowing the new scanned-in data to be used for the first microcycle after the halted state. If the
TPU is then single-stepped through a sequence of microinstructions, the new scanned-in data
remains indefinitely. If the TPU runs (not single stepping) after exiting the halted state, the new
scanned-in data remains only for the first microcycle after the halted state. After the first
microcycle, branch conditions are altered only as described above.

CLKS - Stop Clocks (to TCRs)
This bit controls whether or not the TCRs stop running when the TPU enters the halted state after
asserting one of the following: a breakpoint, HOT4, or the IMB FREEZE signal. Unpredictable
results can arise if this bit is changed during the wait state.

0 = Do not stop TCRs.
1 = Stop TCRs during the halted state.

FRZ1, FRZ-IMB FREEZE Response
The FRZ bits specify the TPU microengine response to the FREEZE signal. FRZ1 FRZ0

MOTOROLA TPU REFERENCE MANUAL
45

FRZ1 FRZ0
0 0 Ignore FREEZE
0 1 Reserved
1 0 Freeze at end of current microcycle
1 1 Freeze at next time-slot boundary

CCL - Channel Conditions Latch
CCL controls the latching of channel conditions (MRL and TDL) when the CHAN register is
written.

0 = Only the pin state condition of the new channel is latched as a result of the write CHAN
register microinstruction.

1 = Pin state, MRL, and TDL conditions of the new channel are latched as a result of a
write CHAN register microinstruction. Latching these conditions allows visibility of
the channel state of other TPU channels without these channels requiring a time slot
and service.

BP, BC, BH, BL, BM, and BT - Breakpoint Enable Bits
Bits 5-0 contain the various breakpoint enable bits for the TPU, specifying the conditions for a
breakpoint. The breakpoint is enabled by setting the corresponding bit to one and is disabled by
setting the bit to zero. These bits are defined as follows:

BP-Break if µPC equals µPC breakpoint register.

BC-Break if CHAN register equals channel breakpoint register at beginning of state or
when CHAN is changed via microcode.

BH-Break if host service latch is asserted at beginning of state.

BL-Break if link service latch is asserted at beginning of state.

BM-Break if MRL is asserted at beginning of state.

BT-Break if TDL is asserted at beginning of state.

A breakpoint occurs if any or all of the enabled breakpoint sources are true. Breakpoints occur at
the beginning of a state with these exceptions: µPC breakpoint can occur at any microcycle, and
the channel breakpoint can occur at the beginning of the state or when CHAN is changed via
microcode.

4.6.3 Development Support Status Register

The development support status register indicates to the CPU whether or not the TPU is in a
halted state, and if so, indicates why. This register resides in supervisor data space. Access to
this register is also qualified by the MCU being in test mode. When read from supervisor data
space in nontest mode, this register reads as $0000 and returns a DTACK. The register is
initialized to $0000 during reset.

MOTOROLA TPU REFERENCE MANUAL
46

DEVELOPMENT SUPPORT STATUS REGISTER $YFFE06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 BKPT PCBK CHBK SRBK TPUF 0 0 0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15-8, 2-0 – Not Implemented

BKPT - Breakpoint Asserted Flag
If an internal breakpoint caused the TPU to enter the halted state, the TPU asserts the BKPT
signal on the IMB and the BKPT flag. The TPU continues to assert BRKPT until it recognizes a
breakpoint acknowledge cycle from a host, or until the FREEZE signal on the IMB is asserted.
Upon recognition of the breakpoint acknowledge cycle or assertion of the FREEZE signal, the
TPU ceases to assert BRKPT. The BKPT flag remains asserted until it is negated by a bus
master. BKPT is negated by first reading the flag in the asserted state, followed by writing the
complement state value. When negated, this flag causes the TPU to exit the halted state.

PCB - µPC Breakpoint Flag
PCBK is asserted if a breakpoint occurs due to a µPC register match with the µPC breakpoint
register. PCBK is negated when the BKPT flag is negated.

CHBK - Channel Register Breakpoint Flag
CHBK is asserted if a breakpoint occurs due to a CHAN register match with the channel register
breakpoint register. CHBK is negated when the BKPT flag is negated.

SRBK - Service Request Breakpoint Flag
SRBK is asserted if a breakpoint occurs due to any of the service request latches being asserted
along with their corresponding enable flag in the development support control register. SRBK is
negated when the BKPT flag is negated.

TPUF - TPU FREEZE Flag
TPUF is asserted whenever the TPU is in a halted state as a result of FREEZE being asserted.
This flag is automatically negated when the TPU exits the hafted state due to FREEZE being
negated.

4.6.4 Test Verification Registers

The test verification registers provide internal visibility into TPU operation. These
registers consist of the link register, the service grant latch register, and the decoded
channel number register. These registers are only accessible by the host CPU in test
mode and while the TPU is halted.

4.6.4.1 Link Register

The link register used in generating a link service request on a channel contains a request
bit for each channel.

LINK REGISTER $YFFE22

MOTOROLA TPU REFERENCE MANUAL
47

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register resides in supervisor data space. CPU access to this register is also qualified
by the MCU being in test mode and halted (T4/T4\). When read from supervisor data
space in nontest mode or when the TPU is not halted, this register reads as $0000 and
returns a DTACK.

0 = Link bit not asserted
1 = Link bit asserted

4.6.4.2 Service Grant Latch Register
This register ensures that all channels requesting service on a particular priority level
receive at least one service time before any channel that has been serviced and requests
new service is serviced again. This register contains a service grant bit for each channel.

SERVICE GRANT LATCH REGISTER $YFFE24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When the corresponding service grant bit is asserted, service is granted to a channel.
This register resides in supervisor data space. CPU access to this register is also qualified
by the MCU being in test mode and halted (T4/T4\).

When read from supervisor data space in nontest mode or when the TPU is not in wait state, this
register reads as $0000.

4.6.4.3 Decoded Channel Number Register
This read-only register indicates the channel currently receiving service and contains a bit for
each corresponding channel.

DECODED CHANNEL NUMBER REGISTER $YFFE26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

An asserted bit in this register indicates that the corresponding channel is being serviced by the
TPU. Only one bit is asserted at any time. This register resides in supervisor data space. CPU
access to this register is also qualified by the MCU being in test mode and halted (T4/T4\). When
read from supervisor data space in nontest mode, when no channel is being serviced, or when the
TPU is not halted, the register reads as $0000.

MOTOROLA TPU REFERENCE MANUAL
48

4.6.5 Test Scan Registers

4.6.5.1 Branch Condition Register (BCR)

The branch condition register reflects branch conditions that are latched from the channel being
serviced by the microengine. (Refer to 4.2.4 Branch PLA and 4.6.2 Development Support
Control Register for information on when each branch condition is latched.) This register can
only be accessed via scan.

BCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V N C Z FLAG1 FLAG0 TDL MRL LSL SEQ1 SEQ0 PIN 0 HSR1 HSR0 CH0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V, N, C, Z - AU Flags
These are status flags from an AU operation indicating overflow, negative, carryout, and zero
results.

Flag1 and Flag0 - Channel Flags
These flags indicate the state of channel flags.

TDL - Transition Detect Latch Flag
When asserted, TDL indicates a specified transition occurrence on a channel whose associated
pin is configured as an input.

MRL - Match Recognition Latch Flag
When asserted, MRL indicates the occurrence of a greater-than-or-equal-to match event.

LSL - Link Service Latch
When asserted, LSL indicates the occurrence of a link.

SEQ1 and SEQ0 - Host Sequence Bits
These bits indicate the state of the host sequence bits.

Pin -
Indicates the state of the pin.

Bit 3 - Not Implemented

HSR1 and HSR0 - Host Service Request Bits
When asserted, these bits indicate the occurrence of a host service request.

Bit 0 - Branch Result
1 = Branch taken
0 = Branch not taken

In test mode, BCR can be scanned and branch results tested by single stepping the TPU.
Conditions are scanned into BCR, a branch instruction is scanned into the microinstruction
register (refer to BCC and BCF microinstruction encodings in Appendix B); the TPU is then
single stepped, and updates CH0 (bit 0) with the result.

MOTOROLA TPU REFERENCE MANUAL
49

4.6.5.2 Hardware Scheduler Condition Register (HSCR)
HSCR contains status information on the hardware scheduler. This register can only be accessed
via scan.

HSCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 NRH NRM NRL CS2 CS1 CS0 NS2 NS1 NS0 SELH SELM SELL 0 0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15,14, 2, and 1 - Not Implemented

NRH, NRM, and NRL - No request on high, mid, or low priority

CS2, CS1, and CS0 - Current state of scheduler

NS2, NS1, and NS0 - Next state of scheduler

SELH, SELM, and SELL - Scheduler selects high, mid, or low for service

When in test mode, HSCR can be scanned and the scheduler tested by setting the test
configuration register (TCR) and asserting ACUT line on the IMB. NRH, NRM, and NRL are
scanned with request data; CS2, CS1, and CS0 are scanned with state data, and the schedule is
exercised via ACUT line. The scheduler updates NS2, NS1, NS0, SELH, SELM, and SELL with
next state and service data. (See Figure 4-19 Hardware Scheduler State Diagram.)

MOTOROLA TPU REFERENCE MANUAL
50

Figure 4-19. Hardware Scheduler State Diagram

4.7 Using the TPU Development Support Features

The TPU development support features are explained by describing the registers and by detailing
methods for setting up breakpoints, scanning into and out of the TPU registers, running the TPU
in emulation mode, single stepping the TPU, and dumping the TPU control store. Addresses are
interpreted as:

Y = m111 ($7 or $F)

where m = state of modmap bit in system integration module.

The TPU registers used are as follows:

• TPU Module Configuration Register-$YFFE00

MOTOROLA TPU REFERENCE MANUAL
51

This register is discussed in 2.1.1 Module Configuration Registers

• TPU Test Configuration Register-$YFFE02

SISEL/SOSEL values:
001 - µPC

010 - Microinstruction

011 - Branch PLA
100 - µPC Breakpoint

101 - Hardware Scheduler

110 - Channel Breakpoint

• TPU Development Support Control Register - $YFFE04
• TPU Development Support Status Register - $YFFE06

The test-submodule registers used are contained in the following list. These registers are also
discussed in the MC68332 user’s manual, document number MC68332UM/AD (formerly
MC68332 SIM User’s Manual).

• Test-Submodule Control Register-$YFFA38

• Test-Submodule Master Shift Register A-$YFFA30

This 16-bit register is used for stimulus of the module under test (the TPU). It is written by
the bus master with the value to be shifted into one of the TPU registers.

• Test-Submodule Master Shift Register B-$YFFA32

This 16-bit register collects the response of the module under test (the TPU). It is read by the
bus master and contains the value shifted out of one of the TPU registers.

• Test-Submodule Shift Count Register A/B-$YFFA34

This 16-bit register controls the number of bits shifted in (A) or out (B) of the module under
test (TPU). The upper byte is referred to as A; the lower byte is referred to as B.

• RAM Array Base Address and Status Register-$YFFB04

4.7.1 Setting Up Breakpoints

The TPU has three types of breakpoints: break on a service request match (transition detect latch,
match recognition latch, link service latch, or host service latch asserted at the beginning of a
phase), break on a channel register match (when the CHAN register is updated), and break on a
µPC match. Each breakpoint type is described in the following paragraphs. The steps for setting
up any of the service request breakpoints are as follows:

MOTOROLA TPU REFERENCE MANUAL
52

1. Enter test mode (these registers and bits can only be written in test mode) by asserting the
ETM bit in the test-submodule control register.

2. Enter wait T4 states by asserting the HOT4 bit in the TPU development support control
register.

3. Write to the TPU development support control register to enable the breakpoint. Breakpoints
are enabled by setting the corresponding bit(s) to a one (1) and are disabled by clearing them.
The bits have the following definitions:

BT - Break if TDL is asserted at the beginning of a phase.

BM - Break if MRL is asserted at the beginning of a phase.

BL - Break if the link service latch is asserted at the beginning of a phase.

BH - Break if the host service latch is asserted at the beginning of a phase.

4. Begin normal operation by requesting service using any of the normal methods and by exiting
wait states (clear HOT4).

Now the TPU is configured for breakpoint on a certain type of service request. When the
corresponding latch is asserted at the beginning of a phase, a breakpoint will be taken at the end
of the time-slot transition period before the execution of the first microinstruction. At that time,
the TPU will enter the halted state, and the TPU development support status register will reflect
the breakpoint status. The BKPT and SRBK flags will be set. While in the halted state, other
TPU registers may be scanned. Before exiting the hafted state, care must be taken to clear the
conditions causing the breakpoint. The following steps should be used:

1 . Clear the latch that caused the breakpoint (TDL, MRL, link service latch, or host service
latch). If this step is not done and breakpoints are still enabled upon exiting the halted
state, another breakpoint will be taken.

2. If no more breakpoints are desired from this source, clear the corresponding bit in the
TPU development support control register (BM, BT, BL, or BH.)

3. Read the TPU development support status register. The breakpoint flags may not be
cleared until they have been read in the asserted state.

4. Clear the BKPT flag in the TPU development support status register. This step clears all
other breakpoint flags that are set and causes the TPU to exit the halted state (unless
HOT4 in the TPU development support control register is set). Normal execution of the
TPU resumes at this point.

The steps for setting up breakpoints on a channel register match and a µPC match are similar:

1. Enter test mode (these registers and bits can only be written in test mode) by asserting
ETM in the test-submodule control register.

2. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

MOTOROLA TPU REFERENCE MANUAL
53

3. Write to the TPU development support control register to enable the breakpoint.
Breakpoints are enabled by setting the corresponding bit(s) to one and are disabled by
clearing them. These bits have the following
definitions:

BC - Break on a channel register match whenever the CHAN register is updated.

BP - Break on a µPC match.

4. Scan the match value into the corresponding breakpoint register (µPC break-point
register or channel breakpoint register) using the appropriate methods described.

5. Begin normal operation by requesting service using any of the normal methods and by
exiting wait states (clear HOT4).

Now the TPU is configured for breakpoint on a match of one of these registers. When the match
occurs, a breakpoint is taken. The timing of the breakpoint depends on whether or not other
breakpoints are pending. If a µPC match is the only breakpoint pending, it occurs immediately
(during the time phase execution.) If a channel match is the only breakpoint pending, it occurs at
the end of the time-slot transition period before the execution of the first microinstruction (if
CHAN register was updated during the time-slot transition period) or immediately (if CHAN
register was updated via microcode). If either breakpoint is pending and a service request
breakpoint is also pending, the breakpoint occurs at the end of the time-slot transition period
before the execution of the first microinstruction. When the breakpoint is taken, the TPU enters
the halted state, and the TPU development support status register reflects the breakpoint status.
The BKPT and PCBK flags or the CHBK flag will be set. While in the halted state, other TPU
registers may be scanned. Before exiting the halted state, care must be taken to clear the
conditions causing the breakpoint. These steps outline the procedure to follow:

1. It may be necessary to update the latch that caused the breakpoint (µPC breakpoint register or
channel number breakpoint register) if the match condition is still present. The latch also
must be updated if another breakpoint is to be taken at another location or when changing to
another channel. The latch is updated by scanning in a new value.

2. If no more breakpoints are desired from this source, clear the corresponding bit in the TPU
development support control register (BC or BP).

3. Read the TPU development support status register. The breakpoint flags may not be cleared
until they have been read in the asserted state.

4. Clear the BKPT flag in the TPU development support status register. This step clears all
other breakpoint flags that are set and causes the TPU to exit the halted state (unless HOT4 in
the TPU development support control register is set). Normal execution of the TPU resumes
at this point.

More than one breakpoint source can be enabled simultaneously. When multiple sources cause a
breakpoint simultaneously, all corresponding flags in the TPU development support status
register will be set. Care must be taken to clear the conditions causing the breakpoint unless
another breakpoint from the same condition is desired.

MOTOROLA TPU REFERENCE MANUAL
54

4.7.2 Steps for Scanning Out the Value of a TPU Register

The following steps may be used to scan out the µPC, branch PLA, µPC breakpoint register,
hardware scheduler PLA, and channel number breakpoint register. The action of scan-in and
scan-out select is shown in the following illustration. (See 4.7.4 To Scan Out of the
Microinstruction Register for scanning out of the microinstruction register.)

1. Enter test mode (the following registers and bits can only be written in test mode) by asserting
ETM in the test-submodule control register.

2. Reconfigure the IMB IRQ lines to test lines by asserting IMBTST in the test-submodule
control register.

3. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

4. Configure to run one microcycle in response to ACUTL line by Writing 01 to ACUTR in the
TPU test configuration register.

5. Clear MUXSEL in the test-submodule control register.

6. Set scan-in select (SISEL = none) and scan-out select (SOSEL = register desired to scan out)
by writing to the TPU test configuration, register.

7. Set shift-out count by writing the number of bits in the specified register to the test-
submodule shift count register B.

8. Start shift by setting SSHOP in the test-submodule control register.

MOTOROLA TPU REFERENCE MANUAL
55

9. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

10. Read the value in the test-submodule master shift register B and save. The value read may
have to be right-adjusted if less than 16 bits were shifted.

The following steps restore the value into the selected TPU register.

11. Set scan-in select (SISEL) to the scanned-out register previously selected to restore its
contents and scan-out select (SOSEL) to none by writing to the TPU test configuration
register.

12. Set up shift-in count by writing the number of bits in the specified register to the test-
submodule shift count register A .

13. Set scan-in value by writing the value that was read into the test submodule master shift
register A.

14. Start shift by setting SSHOP in the test-submodule control register.

15. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

16. Clear IMBTST in the test-submodule control register to reconfigure the IMB IRQ lines.

17. Exit wait T4 states by clearing HOT4 in the TPU development support control register.

4.7.3 To Scan into a TPU Register

Follow previous steps 1-5 and 11-17, writing the desired value into test submodule master shift
register A at step 13.

4.7.4 To Scan Out of the Microinstruction Register

1. Enter test mode (these registers and bits can only be written in test mode) by asserting ETM
in the test-submodule control register.

2. Reconfigure the IMB IRQ lines to test lines by asserting IMBTST in the test submodule
control register.

3. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

4. Configure to run one microcycle in response to ACUTL line by writing 01 to ACUTR in the
TPU test configuration register.

5. Clear MUXSEL in the test-submodule control register.

MOTOROLA TPU REFERENCE MANUAL
56

6. Set scan-in select (SISEL = none) and scan-out select (SOSEL microinstruction) by writing to
the TPU test configuration register.

7. Set shift-out count by writing $0010 to the test-submodule shift count register B (16 bits in
lower word).

8. Start shift by setting SSHOP in the test-submodule control register.

9. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

10. Read the lower word value in the test-submodule master shift register B and save.

The next steps restore the lower word value and read the upper word value:

11. Set scan-in select (SISEL = microinstruction) and scan-out select (SOSEL = none) by writing
to the TPU test configuration register.

12. Set shift counts A and B by writing $1010 to the test-submodule shift count register (16 bits
in each half of microinstruction).

13. Set scan-in value by writing the lower word value that was read into the test-submodule
master shift register A.

14. Start shift by setting SSHOP in the test-submodule control register.

15. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

16. Read the upper word value in the test-submodule master shift register B and save.

17. Combine the microinstruction upper and lower words.

The next steps restore the value of the upper word:

18. Set scan-in select (SISEL = microinstruction) and scan-out select (SOSEL = none) by writing
to the TPU test configuration register.

19. Set shift-in count by writing $1000 to the test-submodule shift count register A (16 bits in
upper word of microinstruction).

20. Set scan-in value by writing upper word value that was read into the test submodule master
shift register A.

21. Start shift by setting SSHOP in the test-submodule control register.

22. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

23. Clear IMBTST in the test-submodule control register to reconfigure the IMB IRQ lines.

MOTOROLA TPU REFERENCE MANUAL
57

24. Exit wait T4 states by clearing HOT4 in the TPU development support control register.

4.7.5 To Scan into the Microinstruction Register

1. Enter test mode (these registers and bits can only be written in test mode) by asserting ETM
in the test-submodule control register.

2. Reconfigure the IMB IRQ lines to test lines by asserting IMBTST in the test submodule
control register.

3. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

4. Configure to run one microcycle in response to the ACUTL line by writing 01 to ACUTR in
the TPU test configuration register.

5. Clear MUXSEL in the test-submodule control register.

6. Set scan-in select (SISEL = microinstruction) and scan-out select (SOSEL = none) by writing
to the TPU test configuration register.

7. Set shift-in count by writing $1000 to the test-submodule shift count register A (16 bits in
lower word of microinstruction).

8. Set scan-in value by writing the lower word value into the test-submodule master shift
register A.

9. Start shift by setting SSHOP in the test-submodule control register.

10. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

11. Set scan-in select (SISEL = microinstruction) and scan-out select (SOSEL = none) by writing
to the TPU microinstruction register.

12. Set shift-in count by writing $1000 to the test-submodule shift count register A (16 bits in
upper word of the microinstruction).

13. Set scan-in value by writing the upper word value into the test-submodule master shift
register A.

14. Start shift by setting SSHOP in the test-submodule control register.

15. Reset IMBTST in the test-submodule control register to reconfigure the IMB IRQ lines.

16. Exit wait T4 states by clearing HOT4 in the TPU development support control register.

4.7.6 Running the TPU in Emulation Mode

MOTOROLA TPU REFERENCE MANUAL
58

1. Write the desired RAM base address, which specifies address bits A23 – A11 of the RAM
array, to RAMBAR. The RAM array is enabled when bit 0 of RAMBAR is zero. RAMBAR
can only be written one time out of reset.

2. Write microcode (including entry points) into the RAM module. Begin at the base address
and continue as in the normal memory map for the TPU control store. The entire block does
not need to be filled as long as the entry points for all functions to be run are in the correct
locations.

3. Set the emulation mode bit (EMU) in the TPU module configuration register. This bit can
only be written one time out of reset. Once set, the RAM cannot be accessed via the IMB.

4. Continue as if running any of the built-in functions:

• Write to the channel priority registers to enable the desired channels.

• Write to the function select registers to choose functions to run on each of the desired
channels (only the microcode in RAM may be executed).

• Write to the parameter RAM to initialize values needed by the functions.

• Write to any other TPU registers necessary for the desired application (e.g.,
enable/disable interrupts).

• Write to the channel priority register allowing operation to begin.

4.7.7 Dumping the Contents of the Control Store

1. Enter test mode (these registers and bits can only be written in test mode) by asserting ETM
in the test-submodule control register.

2. Reconfigure the IMB IRQ lines to test lines by asserting IMBTST in test submodule control
register.

3. Assert INCAD in the TPU test configuration register to increment µPC once for each
microcycle, no jumps.

4. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

5. Configure to run one microcycle in response to the ACUTL line by writing 01 to ACUTR in
the TPU test configuration register.

6. Clear MUXSEL in the test-submodule control register.

7. Clear test registers in the SIM module that are not used (test-submodule master shift register
B, reps counter, distributed register (DREG)).

8. Set scan-in select (SISEL = µPC) and scan-out select (SOSEL = none) by writing to the TPU
test configuration register.

MOTOROLA TPU REFERENCE MANUAL
59

9. Set shift-in count by writing $0900 to the test-submodule shift count register A (nine bits in
µPC).

10. Set scan-in value by setting the test-submodule master shift register A value to the start
address of the dump (000).

11. Start shift by setting SSHOP in the test-submodule control register.

12. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

13. Repeat for each instruction to be dumped:

a) Set SISEL (0) and SOSEL (microinstruction) by writing to the TPU test configuration
register.

b) Run one microcycle by setting ACUT in the test-submodule control register.

c) Set shift-out count by writing $0010 to the test-submodule shift count register B (16 bits
in microinstruction low word.)

d) Shift out low word of microinstruction; start shift by setting SSHOP in the test-
submodule control register.

e) Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

f) Read the lower word value in the test-submodule master shift register B and save.

The next six steps are to scan out the second part of microinstruction and restore the first part:

g) Set SISEL (microinstruction) and SOSEL (microinstruction) by writing to the TPU test
configuration register.

h) Set shift counts by writing $1010 to the test-submodule shift count register (16 bits each
word).

i) Set scan-in value by setting test-submodule master shift register A value to the lower
word read.

j) Start shift by setting SSHOP in the test-submodule control register.

k) Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

l) Read the upper word value in the test-submodule master shift count register B and save.

m) Combine the upper and lower words to form microinstruction.

The next five steps restore the second word of microinstruction:

MOTOROLA TPU REFERENCE MANUAL
60

n) Set SISEL (microinstruction) and SOSEL (0) by writing to the TPU test configuration
register.

o) Set shift-in count by writing $1000 to the test-submodule shift count register A (1 6 bits
in upper microinstruction).

p) Set scan-in value by setting the test-submodule master shift register A value to upper
word read.

q) Start shift by setting SSHOP in the test-submodule control register.

r) Wait for the test-submodule control register BUSY bit to be cleared, which indicates
that shifting is finished.

14. Clear IMBTST in the test-submodule control register to reconfigure the IMB IRQ lines.

15. Clear INCAD in the TPU test configuration register.

4.7.8 Single Stepping the TPU

1. Enter test mode (these registers and bits can only be written in test mode) by asserting ETM
in the test-submodule control register.

2. Reconfigure the IMB IRQ lines to test lines by asserting IMBTST in the test submodule
control register.

3. Enter wait T4 states by asserting HOT4 in the TPU development support control register.

4. Configure to run one microcycle in response to ACUTL line by writing 01 to ACUTR in the
TPU test configuration register.

5. Clear MUXSEL in the test-submodule control register.

6. Clear test registers in the SIM module that are not used (test-submodule master shift register
B, reps counter, distributed register (DREG)).

7. Set scan-in select (SISEL = µPC) and scan-out select (SOSEL = none) by writing to the TPU
test configuration register.

8. Set shift-in count by writing $0900 to test-submodule shift count register A (nine bits in
µPC).

9. Set scan-in value by setting the test-submodule master shift register A value to the start
address of the code to be executed.

10. Start shift by setting SSHOP in the test-submodule control register.

MOTOROLA TPU REFERENCE MANUAL
61

11. Wait for the test-submodule control register BUSY bit to be cleared, which indicates that
shifting is finished.

12. Repeat for each instruction to be executed:

a) Run one microcycle by setting ACUT in the test-submodule control register.

b) Do whatever work or checking is desired in between microcycles (i.e., reading, writing,
or scanning the TPU registers).

13. Clear IMBTST in the test-submodule control register to reconfigure the IMB IRQ lines.

14. Exit wait T4 states by clearing HOT4 in the TPU development support control register.

NOTE

Single stepping can be used with code running out of the control store or in emulation mode.

4.8 Example: A Coherency Solution

Coherent transfer of data in TPU operation is the access of data identical in age or logically
related. More specifically, when written coherently, all data must be written before any is used.
When read coherently, all data must be correctly related to one another. That is, all data must be
updated or none must be updated when read. The condition in which a block of data is read,
while some but not all has been updated, is not allowable.

4.8.1 Coherency Requirements for the TPU

Future time functions developed either by users or by Motorola may require coherent transfer of
three or four parameters. This section provides a solution to such a need. For the predefined
functions, a maximum of two parameters is required to be transferred coherently for proper
operation. For example, the PWM function requires two coherent parameters: the period and
high time. Coherent access of two adjacent parameter registers, with respect to logical address, is
provided by the RAM arbitration scheme. The bus master accesses two adjacent parameters
coherently by executing a long-word read or write. The TPU can also access two parameters
coherently via microcode.

Figure 4-20. TPU RAM

4.8.2 Solution

MOTOROLA TPU REFERENCE MANUAL
62

Various solutions accomplish the coherency requirements. The solution chosen requires no
specialized hardware. Coherency is ensured by the execution of a host control state. A
predefined host control state for coherent reads and another for coherent writes can be written to
support coherent transfers of any number of parameters. Refer to Figure 4-20, a block diagram of
the TPU RAM, for aid in understanding the coherency solution. Figure 1-1 TPU Simplified
Block Diagram demonstrates the integration of the RAM into the TPU. An overview and detailed
discussion follow.

The TPU parameter RAM is dual access. The two users of the RAM are the TPU and a bus
master of the IMB, normally the host CPU. If coherency of more than two parameters is required
for the execution time functions, a portion of RAM is allocated for coherency, i.e., allocated
RAM cannot be used for time function operands.

RAM allocated for coherency contains two types of registers when used for coherency: the
coherent data registers and the coherent data control register.

Coherent data registers are used to interlock coherent parameters. Upon the execution of a host
control state for coherent transfer, coherent data registers (some or all) are transferred to or from
other parameter registers; this transfer is the essence of the solution. Coherency is ensured by the
interlocking of parameters in the coherent data registers and by their transfer to and from other
parameter registers by the TPU. The number of registers to be transferred depends upon the
number of coherent parameters required for a particular coherent operation. The flow for
coherent transfers is demonstrated in Figure 4-21.

Figure 4-21. Coherent Data Flow

The transfer of the coherent data registers to and from the RAM is controlled via a coherent data
control register, one of the parameter registers allocated for coherency. This register contains
status and control bits, including a semaphore bit, which indicates the status of a shared resource
in a system. Before a bus master can use the resource, it must first check the semaphore bit. If
this bit is asserted, the resource is being used. If this bit is negated, the bus master may assert the
bit and begin using the resource.

4.8.3 Parameter Registers Allocated for Coherency

As mentioned above, parameter registers can be allocated for coherency, if coherency is required.
Among the registers are one coherent data control register and multiple coherent data registers.
The number of parameters allocated as coherent data registers depends upon the maximum

MOTOROLA TPU REFERENCE MANUAL
63

number of coherent parameters required. For example, if, at most, three coherent parameters are
required, three coherent data registers must be allocated.

When utilized for coherency, the parameter registers are part of the programmers model of the
TPU and constitute a work space or cache to the bus master coherently accessing the TPU RAM.

4.8.3.1 Coherent Data Register

A coherent data register is a parameter register that may be allocated to interlock a coherent
parameter. Coherent data registers are transferred to other parameter registers upon the execution
of a coherent write state, and parameter registers are transferred to coherent data registers upon
the execution of a coherent read state. Any parameter register may be allocated as a coherent data
register.

4.8.3.2 Coherent Data Control Register

This register is a parameter register used for controlling the coherent transfers. It contains control
bits that affect the host control states that perform the transfers: a semaphore bit and a parameter
address bit field.

The semaphore bit is used to indicate the status of the portion of RAM allocated for coherency. If
this bit is asserted, the allocated RAM is currently being used. If this bit is negated, the allocated
RAM is not being used.

For the semaphore bit to provide status of the allocated RAM’s usage, the following protocol for
bus masters must be used. Before a bus master can use the allocated RAM, it must first check the
semaphore bit. If the bit is asserted, the master must wait for it to be negated. If the bit is
negated, the master may assert the bit and begin using the allocated RAM. The master must
negate the bit after it is finished to relinquish the allocated RAM. A bus master may access
unallocated parameter registers noncoherently regardless of the state of the semaphore bit. The
bus master, which initiated the coherent transfer, must negate the semaphore bit upon completion
of the coherent transfer.

Also included in the coherent data control register is a parameter address bit field. When a
coherent transfer occurs, the parameter address bit field acts as a pointer for the coherent
parameter registers.

4.8.3.3 Write Collision Protection

A coherent write state can also be used to provide write collision protection. Write collision is an
overwrite by the TPU of a parameter written by a bus master (host CPU). A write collision can
occur for the following condition: a state of a time function is executed in which a particular
parameter is updated and a bus master is simultaneously updating the same parameter. The
execution of a coherent write state eliminates the possibility of a write collision since the TPU
microengine executes the write state. Parameters are generally updated by the TPU or a bus
master, but not both.

MOTOROLA TPU REFERENCE MANUAL
64

4.8.4 Four-Parameter Coherency Microcode Example

PRIMITIVE : Coherent Read/Write
ACTION : Coherent Read/Write
NOTES : CDC refers to coherent data control register and CDRn

refers to coherent data register.

PARAMETERS

%macro CHCTL prm0.
%macro CDC #’FE’x.
%macro CDR0 #’E8’x.
%macro CDR1 #’EA’x.
%macro CDR2 #’EC’x.
%macro CDR3 #’EE’x.

PHASE : Coherent read
PRELOAD PARAMETER :
ENTER WHEN : issued host service request 01
ACTION : execute a coherent read

%entry prim = 2, ram p <- prm0, target *, cond hsr1 = 1 hsr0 = 0.

%org #0.

Coherent-read
000 * ram p <- @CDC.
001 * au acc := phi.
002 * au sr := #77.

Mode:
003 AE07FEFF if SEQ1 = 0 then goto Start-trans.
004 * au dec := #08.
005 * au dec := #0D.

Start-trans:
006 Call Coh-trans, flsh.

End-of-Phase : for undefined entries

007 3FFFFFFE !End_of_phase : end.

MOTOROLA TPU REFERENCE MANUAL
65

PHASE : Coherent write
PRELOAD PARAMETER :
ENTER WHEN : issued host service request 10
ACTION : execute a coherent write

%entry prim = 2, ram p <- prm0, target cond hsr1 = 1 hsr0 = 1.

Coherent write :
008 * ram p <- @CDC.

009 * au sr := phi.

00A * goto Mode.

00B * au acc := #77.

PROCEDURE : Coh_trans
CALLED BY : Coherent_read, Coherent_write
ACTION : coherent transfer of 3/4 parameters
PARAMETERS & REGISTERS :
If called by Coherent_read:

sr - right-justified address for CDR3
acc - right-justified address for LAST PARAMETER of coherent data

block (P2 or P3)
If called by Coherent_write:

sr - right-justified address for LAST PARAMETER of coherent data
block (P2 or P3)

acc - right-justified address for CDR3

Coh-trans:
00C * au diob :=<< acc.
00D * ram p <- (diob); au diob :=<< sr.
00E * ram p -> (diob); au acc := acc
00F * goto Coh_trans; suben.
010 * au sr := sr - 1.

UNDEFINED ENTRIES - execute an end.

%entry prim = 2, ram p<-prm0, target End-of_phase,
cond hsr1 = 0 hsr0 = 1

%entry prim = 2, ram p<-prm0, target End - of_phase,
cond hsr1 = 0 hsr0 = 0 m/tsr = 1 lsl = 0.

%entry prim = 2, ram p<-prm0, target End-of_phase,
cond hsr1 = 0 hsr0 = 0 lsl = 1.

ENTRY TABLE

110 10001000

MOTOROLA TPU REFERENCE MANUAL
66

111 1001100E
112 10001000
113 10001000
114 10001000
115 10001000
116 10001000
117 10001000

ROM MAP

 0123456789ABCDEF

0 XXXXXXXXXXXXXXXX
1 XXXXXXXXXXX•••••
2 ••••••••••••••••
3 ••••••••••••••••
4 ••••••••••••••••
5 ••••••••••••••••
6 ••••••••••••••••
7 ••••••••••••••••
8 ••••••••••••••••
9 ••••••••••••••••
A ••••••••••••••••
B ••••••••••••••••
C ••••••••••••••••
D ••••••••••••••••
E ••••••••••••••••
F ••••••••••••••••

ENTRY TABLE MAP

100 •• •• •• •• •• •• •• ••
108 •• •• •• •• •• •• •• ••
110 XX XX XX XX XX XX XX XX
118 •• •• •• •• •• •• •• ••
120 •• •• •• •• •• •• •• ••
128 •• •• •• •• •• •• •• ••
130 •• •• •• •• •• •• •• ••
138 •• •• •• •• •• •• •• ••
140 •• •• •• •• •• •• •• ••
148 •• •• •• •• •• •• •• ••
150 •• •• •• •• •• •• •• ••
158 •• •• •• •• •• •• •• ••
160 •• •• •• •• •• •• •• ••
168 •• •• •• •• •• •• •• ••
170 •• •• •• •• •• •• •• ••
178 •• •• •• •• •• •• •• ••

LABELS

Label Address (decimal)
coherent_read 01 1
coherent_write 0E 14
end_of_phase 00 0
read_3_param 07 7

MOTOROLA TPU REFERENCE MANUAL
67

write_3_param 14 20

Symbol Table

Symbol Value
chctl prm0
cdc #’fe’x
cdr0 #’e8’x
cdr1 #’ea’x
cdr2 #’ec’x
cdr3 #’ee’x

