
 

Order this document
 by  TPUPN09/D

  

SEMICONDUCTOR

 

MOTOROLA

PROGRAMMING NOTE

              
Multiphase Motor Commutation TPU Function 
(COMM)
by Jeff Wright

1 Functional Overview
The commutation (COMM) TPU function uses multiple TPU channels to produce the drive enable sig-
nals necessary for commutating brushless motors. Motor types supported include three- and four-
phase brushless dc and three-phase switched reluctance motors. The COMM function is used in con-
junction with another TPU function to provide a choice of sensored (Hall effect or optical) or sensorless
(from an encoder) commutation. The signals produced by COMM are externally gated with a PWM, also
generated by the TPU, to drive the motor. The COMM function has been optimized for flexibility and this
may allow it to meet the requirements of other multisignal applications.

2 Detailed Description
The COMM TPU function produces the commutation drive signals for a variety of brushless motor
types. The function can use up to eight adjacent TPU channels (one master channel and from one to
seven slave channels) to generate the commutation signals. For example, six channels can be used for
a three-phase brushless dc motor or four channels can be used for a four-phase motor. All TPU service
activity takes place on the master channel — the slaves are used only as synchronized output pins.
When a commutation state change occurs, the pin state change on each output channel is synchro-
nized using an output match based on the TCR1 counter.

COMM has been designed to work with several TPU input functions to provide a choice of sensored or
sensorless commutation. To support these input functions, COMM has two basic operating modes se-
lected by the host sequence bits on the master channel:

Sensored Mode is designed to work with the Hall effect decode (HALLD) TPU function. HALLD is an
input function that decodes either two or three Hall effect or optical sensors and a CPU-supplied direc-
tion input into a state number. HALLD writes this state number into parameter RAM of the COMM func-
tion master channel and then issues a link to that channel. On receipt of the link, COMM obtains the
output pin configuration that corresponds to the new commutation state from a table in parameter RAM
and subsequently outputs the new commutation state. The user has complete control over the commu-
tation sequence via the programmable state table in the COMM function and a CPU force feature which
allows the CPU to force a particular commutation state. Figure 1 shows a typical Hall effect setup and
control waveforms. 

Sensorless Mode is designed to support sensorless commutation from a high resolution encoder on
the shaft of a motor. To keep the COMM function as flexible as possible, the sensorless mode of oper-
ation has been implemented as a programmable state machine. The basis for the production of the
commutation signals is a counter representing the angular position of the motor. This counter is the po-
sition count output of a TPU input function such as quadrature decode (QDEC), or fast quadrature de-
code (FQD), which derives angular position from the shaft encoder. Figure 2 shows typical shaft
encoder setup and control waveforms. 
© MOTOROLA INC,  1997



  
Figure 1 Typical Hall Effect Setup and Waveforms

TPU HALL COMM CONN

0 60 120 180 240 300 360 420 480 540 600 660 720
HALLD

A

B

C

COMM

M

S1

S2

S3

S4

S5

MOTOR
O

U
TP

U
T 

IN
TE

R
FA

C
E 

& 
D

R
IV

ER
S

(MC)PWM

NITC
B

C

M

S1

S2

S3
COMM

IN
TE

R
FA

C
E

FUNCTION

TPU

N S

NS

ROTOR

ASSY

S4

S5

A

 MOTOROLA TPU Programming Library
2 TPUPN09/D



       
The COMM function directly accesses this counter, located anywhere in parameter RAM, and performs
tests on it to determine the required state of the commutation output pins. This process is carried out
without CPU intervention. The COMM function maintains upper and lower angular limits to the current
state in parameter RAM. On each service of the COMM function, the position counter is compared with
these limits. If the position count has passed either limit, the state number is updated and a new state
parameter is obtained from a circular table in parameter RAM. The state parameter contains pin con-
figuration and length of the new state in position counts. New upper and lower angular limits are calcu-
lated using the length of the new state, then stored for use in subsequent state tests; the new pin
configuration is subsequently output on the COMM channels.

As an additional feature of sensorless operation, a CPU supplied angular offset is added to the position
count before the limit tests. This parameter, which can be updated at any time, allows the CPU to ad-
vance or retard previously programmed state switching angles. The offset parameter can be used to
start the motor in a particular direction, to partially compensate for TPU service latencies, to maintain
torque at high motor speeds, and to force braking on the motor. See 7 Performance and Use of Func-
tion for more detail.

The number of states in the commutation sequence, the length in angular position counts of each state,
the number of channels used for commutation, and the pin states for each state are all independently
programmable by the user. These capabilities make COMM suitable for a wide variety of commutation
schemes.

The size of the state table determines the number of states that can be generated. Maximum table size
is dependent upon which TPU channel is picked as the master COMM channel. For channels 0 to 12
and channel 15, six states can be implemented; for channel 13, up to 22 states are possible, and 14
states can be implemented if channel 14 is chosen as the master channel. Up to eight TPU channels
can be used as COMM signal outputs (including the master channel), and each state has a length which
is individually programmable over an 8-bit range in position counts. In applications using a very high
resolution encoder, an 8-bit range for the state length in position counts may not be sufficient. COMM
allows the use of multiple state table entries, programmed to have the same output pin configuration,
to effectively lengthen the state.

In sensorless operation, the COMM function has been designed to update the commutation signals on
a periodic basis. There are two “sub-modes” of sensorless operation: 

In Match Update mode, a user programmable periodic match on the master COMM channel is
used to invoke updating of the commutation signals. Assuming an accurate position encoder, the
accuracy of commutation is dependent on this periodic update rate. A faster update rate results in
more accurate commutation, but higher TPU overhead. This mode is provided for use with the
QDEC and FQD TPU input functions.

In Link Update mode, the update of the commutation signals is invoked by a link request from an-
other TPU channel. Assuming an accurate position encoder, the frequency of the link from the other
channel determines the accuracy of commutation. A faster update rate results in more accurate
commutation, but higher TPU overhead. This mode is provided for use with the DUC TPU function.
TPU Programming Library MOTOROLA
TPUPN09/D 3



  
Figure 2 Typical Sensorless Setup and Waveforms

TPU 4PH COMM CONN

0 90
FQD

A

B

COMM

M

S1

S2

S3

STATE NO 0 1 2 3

A

B

180 270 360 450 540 630 720 810 900 990

0 1 2 3 0 1 2

MOTOR
O

U
TP

U
T 

IN
TE

R
FA

C
E 

& 
D

R
IV

ER
S

(MC)PWM

NITC

A

B
QDEC/FQD

M

S1

S2

S3

COMM

IN
TE

R
FA

C
EFUNCTION

TPU

N S

NS

ROTOR

ASSY

ENCODER

OPTICALSENSOR A

SENSOR B

INDEX DETECT
 MOTOROLA TPU Programming Library
4 TPUPN09/D



                  
2.1 All Modes

The host CPU can force any commutation state, to put the motor stator field into a known configuration,
at any time. The CPU can also interrogate the COMM function at any time to determine which state is
currently active. Since the state table is programmed during initialization, the user can decide which
state number corresponds to which output pin configuration. This flexibility allows a variety of commu-
tation schemes to be implemented. 

To drive the motor, the outputs of the COMM function TPU channels are used to gate a PWM generated
on another TPU channel onto the motor phase drivers.

The TPU is flexible enough to support an application with both Hall effect or optical sensors for commu-
tation and an encoder on the motor shaft for deriving speed and direction information. This may be ben-
eficial in environments where encoder information cannot be relied upon to be completely accurate.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. COMM function code size is:

42 µ instructions + 8 entries = 50 long words

4 Function Parameters
This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 3 shows TPU parameter RAM address mapping. Figure 4 shows the parameter RAM assign-
ment used by the function. In the diagrams, Y = M111, where M is the value of the module mapping bit
(MM) in the system integration module configuration register (Y = $7 or $F). 

— = Not Implemented (reads as $00)

Figure 3 TPU Channel Parameter RAM CPU Address Map

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
TPU Programming Library MOTOROLA
TPUPN09/D 5



      
W = Master COMM channel number
* These parameters are not available in all configurations — see text.

Figure 4 Comm Function Parameter RAM Assignment

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 NO_OF_PINS COUNTER_ADDR

$YFFFW2 NO_OF_STATES STATE_NO

$YFFFW4 OFFSET

$YFFFW6 UPDATE_PERIOD

$YFFFW8 UPPER

$YFFFWA LOWER

$YFFFWC

$YFFFWE

Commutation Sequence Parameters

$YFFF(W+1)0 (LENGTH) STATE 0 (PIN CONFIG)

$YFFF(W+1)2 (LENGTH) STATE 1 (PIN CONFIG)

$YFFF(W+1)4 (LENGTH) STATE 2 (PIN CONFIG)

$YFFF(W+1)6 (LENGTH) STATE 3 (PIN CONFIG)

$YFFF(W+1)8 (LENGTH) STATE 4 (PIN CONFIG)

$YFFF(W+1)A (LENGTH) STATE 5 (PIN CONFIG)

$YFFF(W+1)C (LENGTH) STATE 6* (PIN CONFIG)

$YFFF(W+1)E (LENGTH) STATE 7* (PIN CONFIG)

$YFFF(W+2)0 (LENGTH) STATE 8* (PIN CONFIG)

$YFFF(W+2)2 (LENGTH) STATE 9* (PIN CONFIG)

$YFFF(W+2)4 (LENGTH) STATE 10* (PIN CONFIG)

$YFFF(W+2)6 (LENGTH) STATE 11* (PIN CONFIG)

$YFFF(W+2)8 (LENGTH) STATE 12* (PIN CONFIG)

$YFFF(W+2)A (LENGTH) STATE 13* (PIN CONFIG)

$YFFF(W+2)C (LENGTH) STATE 14* (PIN CONFIG)

$YFFF(W+2)E (LENGTH) STATE 15* (PIN CONFIG)

$YFFF(W+3)0 (LENGTH) STATE 16* (PIN CONFIG)

$YFFF(W+3)2 (LENGTH) STATE 17* (PIN CONFIG)

$YFFF(W+3)4 (LENGTH) STATE 18* (PIN CONFIG)

$YFFF(W+3)6 (LENGTH) STATE 19* (PIN CONFIG)

$YFFF(W+3)8 (LENGTH) STATE 20* (PIN CONFIG)

$YFFF(W+3)A (LENGTH) STATE 21* (PIN CONFIG)

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
 MOTOROLA TPU Programming Library
6 TPUPN09/D



                         
4.1 COUNTER_ADDR

This 8-bit parameter is initialized by the CPU to contain the address in parameter RAM of the angular
position counter (POSITION_COUNT) that is used as the basis for the state tests in sensorless mode.
For instance, if POSITION_COUNT is resident in the second parameter of channel 4, $42 is stored in
COUNTER_ADDR. COUNTER_ADDR must not be changed while the motor is running.
COUNTER_ADDR is not used in sensored mode.

4.2 NO_OF_PINS

This CPU-written parameter contains the number of TPU channels used to generate commutation sig-
nals (including the master channel). Although this is a 4-bit parameter, the maximum number of chan-
nels that can be used is eight, corresponding to the length of the PIN_CONFIG field of STATE_N. To
use six channels for three-phase commutation, enter $06 in NO_OF_PINS. The valid range for
NO_OF_PINS is 1 ≤ NO_OF_PINS ≤ 8. NO_OF_PINS must not be changed while the motor is running.

4.3 STATE_NO

This 8-bit parameter is used by the TPU to keep track of the current commutation state and it is used
as an address to obtain the correct state parameter from the table. STATE_NO can be read at any time
by the CPU. In sensorless mode, STATE_NO is updated by the TPU when the COMM function is ser-
viced and a state change results. In sensored mode, the HALLD TPU function writes a state number
into STATE_NO before issuing a link request to the COMM channel. STATE_NO may not reflect the
commutation state currently in effect due to the delay between the update of STATE_NO and the up-
date of the COMM function channel pins (dependent on UPDATE_PERIOD and TPU latency). 

The CPU can also write STATE_NO and use an HSR %10 to force the outputs to the corresponding
configuration for the new state. A sequence of these force commands can be used during start-up of
the motor to align it into a known condition. See 7 Performance and Use of Function for more infor-
mation.

The valid range for STATE_NO is 0 to (NO_OF_STATES –1).

4.4 NO_OF_STATES

This 8-bit CPU-written parameter determines the number of states in the commutation sequence in sen-
sorless mode. For example, $06 must be written to NO_OF_STATES for six state commutation. The
number of states which can be implemented is limited by the amount of contiguous parameter RAM
available, starting with parameter 0 of the first slave channel (next higher channel in numeric order from
master channel). The amount of contiguous parameter RAM is dependent upon which channel is cho-
sen as the master, due to unimplemented parameter RAM locations (See Figure 3) — for channels 0
to 12 and channel 15, six states can be implemented; for channel 13, up to 22 states are possible, and
14 states can be implemented if channel 14 is chosen as master. NO_OF_STATES must be greater
than zero at all times. When using COMM in sensored mode with the HALLD function, the
NO_OF_STATES parameter is unused — it is overwritten when HALLD writes a new STATE_NO.

4.5 OFFSET

In sensorless mode, this 16-bit signed parameter can be used by the host CPU to advance or retard all
the state switching angles on the fly. OFFSET is added to the position counter obtained via
COUNTER_ADDR and the sum is used in position limit tests. When not used, OFFSET should be ini-
tialized to zero by the CPU. OFFSET can be written at any time; it is unused in sensored mode. See
7.5 Using Offset in Sensorless Mode for a detailed discussion of the OFFSET parameter. 

4.6 UPDATE_PERIOD

This 16-bit parameter can be used in two different ways, depending on operating mode. The valid range
for UPDATE_PERIOD is 1 to $8000 (in TCR1 counts), but in practice the minimum value is higher due
to TPU service latency. See 7 Performance and Use of Function for more information. 
TPU Programming Library MOTOROLA
TPUPN09/D 7



               
When used for Match Update in sensorless mode, UPDATE_PERIOD determines the frequency of up-
date of the commutation signals. The parameter is used to schedule a periodic match on the master
channel. When the match occurs, the TPU tests the sum of the position counter and OFFSET against
UPPER and LOWER and if a state change occurs, the new pin configuration appears on the output pins
on the next update match. A smaller UPDATE_PERIOD results in more accurate commutation but re-
quires greater TPU service overhead. UPDATE_PERIOD can be changed by the CPU while the motor
is running to alter the accuracy of commutation at different motor speeds.

When used for Link Update in sensorless or sensored modes, each time a link is received by the mas-
ter channel, UPDATE_PERIOD is used to schedule a match on all the COMM channels, so that the new
pin states occur simultaneously on multiple channels. In this case, UPDATE_PERIOD should be pro-
grammed to a much smaller value than in match update mode, to allow the pins to change state just
after completion of service of the master channel.

4.7 UPPER

This 16-bit parameter contains a value, in position counts, that corresponds to the upper angular bound-
ary of the current commutation state. UPPER is not used in sensored mode or during a CPU force of a
particular state. In sensorless modes, if the sum of OFFSET plus the position counter is greater than or
equal to UPPER, STATE_NO is incremented and the pin configuration of the new state is output. After
the CPU has finished forcing states during motor start-up, UPPER should be written to a value matching
the current state length and position count value. Thereafter UPPER is updated automatically by the
TPU when a state transition occurs.

4.8 LOWER

This 16-bit parameter contains a value, in position counts, that corresponds to the lower angular bound-
ary of the current commutation state. LOWER is not used in sensored mode or during a CPU force of
a particular state. In sensorless mode, if the sum of OFFSET plus the position counter is less than LOW-
ER, STATE_NO is decremented and the pin configuration of the new state is output. After the CPU has
finished forcing states during motor start-up, LOWER should be written to a value matching the current
state length and position count value. Thereafter LOWER is updated automatically by the TPU when a
state transition occurs.

4.9 USTATE_0...STATE_N

These 16-bit parameters, one for each state in the commutation sequence, reside in the parameter
RAM of the slave COMM channels, starting with STATE_0 in the first parameter of slave channel 1. The
maximum available number of STATE_N parameters is dependent upon the choice of master channel.
Except in special cases, when channel 13 or channel 14 is selected as the master channel, the param-
eter RAM of the second and subsequent slave channels cannot be used for STATE_N parameters. The
STATE_N parameter used at any particular time is determined by the value of STATE_NO. For in-
stance, if STATE_NO = 3, the STATE_3 parameter is used. STATE_N parameters contain two byte-
sized fields:

STATE_LENGTH specifies the length of the state in increments of the counter pointed to by
COUNTER_ADDR. The length of each state is freely programmable over the range $01 to $FF un-
signed. This field is not used in sensored mode.

PIN CONFIG determines the output pin levels for commutation state N. The field is right justified — if
six channels are being used for commutation, the low six bits of PIN CONFIG are used to hold the pin
levels.
 MOTOROLA TPU Programming Library
8 TPUPN09/D



                   
5 Host Interface to Function
This section provides information concerning the TPU host interface to the COMM function. Figure 5 is
a TPU address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111,
where M is the value of the module mapping bit (MM) in the system integration module configuration
register (Y = $7 or $F).

Figure 5 TPU Address Map

CFS[4:0] — Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
TPU Programming Library MOTOROLA
TPUPN09/D 9



                         
HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Operating Mode — Only Used On 
Master Channel

00 Sensorless Match Update Mode

01 Sensorless Match Update Mode

10 Sensorless Link Update Mode

11 Sensored Mode

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Initialization

00 No Host Service (Reset Condition)

01 Not Used

10 Initialize or force state

11 Initialize or force immediate state test

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Channel Priority

00 Disabled 

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted 

1 Channel interrupt asserted
 MOTOROLA TPU Programming Library
10 TPUPN09/D



           
6 Function Configuration
The steps necessary for the CPU to configure the COMM function vary according to the mode selected
and the functions used to make up the rest of the drive system. These descriptions detail initialization
of the COMM function only. For information concerning use and initialization of other TPU functions
(MCPWM, FQD, HALLD etc.) refer to the appropriate TPU Programming Notes. Refer also to 7.2 Motor
Start-Up in Sensorless Mode and 7.3 Motor Start-Up in Sensored Mode for more details. Initialize
the COMM function as follows. (Steps 1, 2, and 3 are the same in all modes.)

6.1 Sensored Mode (HSQ[1:0] = %11)

Assumes use in conjunction with the HALLD TPU function.  

1. Disable all COMM channels by clearing their two channel priority bits.
2. Select the COMM function on the selected master channel by writing the assigned COMM func-

tion number to the appropriate channel function select bits.
3. Select the desired mode of operation by writing the two host sequence bits (HSQ[0:1]) of the

master COMM channel.
4. Write NO_OF_PINS and UPDATE_PERIOD.
5. Write the STATE_0 to STATE_N parameter table in slave channel parameter RAM.
6. Write a value into STATE_NO corresponding to the desired initial commutation state.
7. Issue an HSR %10 to the master channel to output the above state.
8. Write a non-zero value to the master channel priority bits to enable and prioritize service.
9. Wait for the HSR bits to be cleared by the TPU or for the interrupt status bit of the master chan-

nel to be set. This indicates the end of service. Within UPDATE_PERIOD TCR1 counts, the ini-
tial commutation state will be present on the COMM channel pins.

10. Initialize the HALLD function.
11. The HALLD function supplies link requests along with a new STATE_NO when a commutation

update is required.

6.2 Sensorless Link Update Mode (HSQ[1:0] = %10)

Assumes use in conjunction with the DUC TPU function.  

1. Disable all COMM channels by clearing their two channel priority bits.
2. Select the COMM function on the selected master channel by writing the assigned COMM func-

tion number to the appropriate channel function select bits.
3. Select the desired mode of operation by writing the two host sequence bits (HSQ[0:1]) of the

master COMM channel.
4. Write NO_OF_PINS, COUNTER_ADDR and UPDATE_PERIOD.
5. Write the STATE_0 to STATE_N parameter table in the slave channel(s) parameter RAM.
6. Initialize the DUC function.
7. Write a value into STATE_NO corresponding to the desired initial commutation state. Write the

NO_OF_STATES parameter at the same time.
8. Issue an HSR %10 to the master channel to output the above state.
9. Write a non-zero value to the master channel priority bits to enable and prioritize service.
10. Wait for the HSR bits to be cleared by the TPU or the interrupt status bit of the master channel

to be set. This indicates the end of service. Within UPDATE_PERIOD TCR1 counts, the initial
commutation state will be present on the COMM channel pins.

11. Write the initial UPPER and LOWER parameters calculated from the DUC position count value
obtained after stop 10.

12. Initialize OFFSET.
13. The COMM function now runs automatically as a slave to the DUC function.
TPU Programming Library MOTOROLA
TPUPN09/D 11



               
6.3 Sensorless Match Update Mode (HSQ[1:0] = %00 or %01)

Assumes use in conjunction with QDEC or FQD TPU functions.  

1. Disable all COMM channels by clearing their two channel priority bits.
2. Select the COMM function on the selected master channel by writing the assigned COMM func-

tion number to the appropriate channel function select bits.
3. Select the desired mode of operation by writing the two host sequence bits (HSQ[0:1]) of the

master COMM channel.
4. Write NO_OF_PINS, COUNTER_ADDR and UPDATE_PERIOD.
5. Write the STATE_0 to STATE_N parameter table in the slave channel(s) parameter RAM.
6. Initialize the QDEC or FQD function.
7. Write a value into STATE_NO corresponding to the desired initial commutation state. Write the

NO_OF_STATES parameter at the same time.
8. Issue an HSR %10 to the master channel to output the above state.
9. Write a non-zero value to the master channel priority bits to enable and prioritize service.
10. Wait for the HSR bits to be cleared by the TPU or the interrupt status bit of the master channel

to be set. This indicates the end of service. Within UPDATE_PERIOD TCR1 counts later, the
initial commutation state will be present on the COMM channel pins.

11. Write the initial UPPER and LOWER parameters calculated from the QDEC or FQD position
count value obtained after step 10.

12. Initialize OFFSET.
13. Issue an HSR %11 to the master channel to start the periodic state update matches.
14. The COMM function now runs automatically, accessing the QDEC or FQD channel as required.

7 Performance and Use of Function
Like all TPU functions, the performance limit of the COMM function in a given application depends upon
the service time (latency) of other active TPU channels. This is due to the way the scheduler operates.
Worst-case latency in any TPU application can be closely estimated. To analyze the performance of an
application that appears to approach the limits of the TPU, use the guidelines given in the TPU refer-
ence manual, information in the state timing table below, and figures in the state timing tables of other
active functions. 

Since COMM is always used in conjunction with at least two other TPU functions — an input function
and a PWM function — the entire system must be analyzed to assess performance. In a typical system
using a shaft encoder, the service demands of the quadrature function are much greater than that of
the COMM function, and so determine the maximum attainable motor rpm. Typically, the higher the res-
olution of the encoder, the lower the maximum supportable motor rpm. In a three-phase system with a
2000 count encoder, typical maximum motor speed is approximately 11,000 rpm. If the COMM function
is used with the HALLD function and no quadrature decoding takes place, or quadrature decoding is
performed off-chip, maximum motor rpm is much higher (> 100,000 rpm).

Two examples of system performance calculation are provided later in this note.

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks)

Table 1 Commutation Function — State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

S1 FORCE_COMM 24 + (14 ∗  NO_OF_PINS) 5

S2 UPDATE_COMM 64 + (14 ∗  NO_OF_PINS) 16

S3 MATCH_UPDATE_COMM 62 + (14 ∗  NO_OF_PINS) 16
 MOTOROLA TPU Programming Library
12 TPUPN09/D



       
7.1 Commutation Accuracy

The TPU is essentially a software (microcode) driven system. This means that there is always a delay
(variable) between a change in input conditions and a corresponding change in output conditions. This
delay is largely dependent on the service times of the functions running on the TPU. In the case of the
COMM function this delay affects the accuracy of motor commutation, i.e. how soon the commutation
state changes in response to a valid change in feedback conditions. Sensored and sensorless modes
are considered separately below. In both cases it should be noted that, unless parameters are modified
on the fly by the CPU, the delay affecting commutation is relatively constant in the time domain, so that
the percentage accuracy in angular terms worsens as motor speed increases.

7.1.1 Sensored Mode

In this configuration (see Figure 6), the following sequence of events leads to a change in commutation. 

1. A transition on one of the sensor lines occurs, resulting in a service request for the HALLD func-
tion.

2. HALLD is serviced, a new state number is written to the COMM master channel and a link re-
quest is issued.

3. The COMM function is serviced as a result of the link. The new PIN CONFIG parameter con-
taining the commutation pin states is obtained from the state table and a match is scheduled
on all the COMM channels for:

Current time + UPDATE_PERIOD 

where current time is the time at the start of the COMM function service (see below). 

4. When the above match occurs, the new commutation state appears on the COMM channel
pins.

UPDATE_PERIOD has a minimum allowable value that guarantees that all COMM function pins tran-
sition simultaneously when the state changes. This is due to the elapsed time between the TPU reading
the current time at the beginning of COMM service and setting up the match on the last slave channel
at the end of the service. UPDATE_PERIOD should always be equal to or higher than this minimum
which is defined as:

UPDATE_PERIODmin (CPU clocks) = 64 + 14 ∗  NO_OF_PINS.

Providing that UPDATE_PERIOD meets these criteria, the worst case delay (TDmax) from a change in
sensor states to a change in commutation state can be calculated as follows:

TDmax = (Worst case latency of HALLD) + (Worst case HALLD service time) + 

(Worst case latency for COMM) + (14 CPU clocks for COMM time slot transition [TST]) + 
UPDATE_PERIOD.

Refer to the TPU reference manual and to the state timing of all functions running on the TPU for infor-
mation on how to complete this calculation. 

TDmax is the absolute worst case — the average delay is much smaller. This means that commutation
accuracy varies in real time depending on the current loading of the TPU when a sensor transition oc-
curs. This variation shows up as jitter on the COMM function outputs.
TPU Programming Library MOTOROLA
TPUPN09/D 13



         
Figure 6 Sensored Configuration

7.1.2 Sensorless Mode

In this configuration (See Figure 7), the following sequence of events leads to a change in commuta-
tion.  

1. A transition that should result in a commutation change occurs on one of the encoder sensor
lines, resulting in a service request to the FQD or QDEC function.

2. The quadrature decode function services the transition and updates the position counter.
3. On the next periodic service of COMM after the position counter has been updated, new com-

mutation pin states are obtained from the table and another periodic match is scheduled on all
the COMM channels for time:

last periodic match time + UPDATE_PERIOD.
4. When the above match occurs, the new commutation state appears on the COMM channel

pins.

Here the worst case occurs when an encoder transition takes place just as a periodic service of the
COMM function is started. The position counter is not updated until after the COMM function is serviced,
and so is not recognized by COMM until the next periodic service — the new state does not become
active until the update match after that. Worst case delay (TDmax) from a change in encoder state to a
change in commutation state can be calculated as follows:

TDmax = 2 ∗  UPDATE_PERIOD

The average TD is approximately 1.5 times UPDATE_PERIOD, with a minimum of UPDATE_PERIOD.
This variation in TD means that commutation accuracy varies in real time depending on how far through
an UPDATE_PERIOD the system is when the sensor transition occurs. This variation shows up as jitter
on the COMM function outputs.

The above formula assumes that UPDATE_PERIOD is longer than the sum of worst case latency and
worst case service time for the COMM function. Superior performance is therefore obtained by calcu-
lating these parameters and programming UPDATE_PERIOD to be just greater than their sum. See 8
Function Examples for more information. 

If this delay is unacceptable, the OFFSET parameter can be used to make a partial correction. By using
OFFSET to advance the commutation switching angles by an amount equivalent to 1.5 times

TRANSITION 

HALLD SERVICED HERE

 UPDATE_PERIOD 

 TDMAX 

SENSOR X

COMM PINS
1 ⇒  N

ON SENSOR  

MATCH OCCURS; COMM PINS
CHANGE – NEW STATE ACTIVE

– LINK GENERATED TO COMM COMM FUNCTION
SERVICED

MATCH SCHEDULED

T.S.T.
 MOTOROLA TPU Programming Library
14 TPUPN09/D



         
UPDATE_PERIOD TCR1 clocks at the current motor speed, switching delay can be reduced from the
range –0 to +(2 ∗  UPDATE_PERIOD) to a range of approximately ± UPDATE_PERIOD / 2. To optimize
this technique, OFFSET should be changed by the CPU as the motor speed varies.

Figure 7 Sensorless Configuration

7.2 Motor Start-Up in Sensorless Mode

When commutating from an encoder, the motor must first be brought into a known rotor alignment. The
COMM function allows the CPU to align the motor by forcing a sequence of commutation states, using
a write to STATE_NO followed by issuing an HSR type%10. The precise sequence of states depends
upon motor topology, but the sequence ends with the motor aligned in a known commutation state. If
there is any load torque on the motor, it will not be perfectly center aligned within the state — this is the
normal reason for providing an index mark (usually on the encoder) that produces a pulse when the
rotor is perfectly aligned in the center of a particular commutation state. The mark allows the motor to
be correctly aligned by slowly rotating the shaft while monitoring the index signal, either directly by the
CPU or by using the NITC TPU function. When the index pulse is detected, system initialization can be
completed and the COMM function will be correctly configured with the motor in the center of a known
state. The following is a suggested method (others exist and may be more convenient) of completing
system initialization when the index pulse is detected:

The CPU should initialize UPPER and LOWER to correspond to the boundaries of the aligned state.
OFFSET should be cleared. UPPER and LOWER are derived as follows:

UPPER = POSITION_COUNT + STATE_LENGTH / 2

LOWER = POSITION_COUNT – STATE_LENGTH / 2

Where POSITION_COUNT is obtained from FQD, QDEC, or DUC function parameter RAM
(POSITION_COUNT can be latched by the NITC function that detects the index pulse).

When using POSITION_COUNT for match update, issue an HSR type %11 to the master COMM chan-
nel to start the periodic matches. When using POSITION_COUNT for link update, the DUC function
should be enabled to issue periodic link requests to the COMM master channel.

To actually start the motor moving in either direction, the OFFSET parameter should be written by the
CPU to a value corresponding to the angular offset that produces maximum motor torque (for example,
± 1.5 times STATE_LENGTH for a three-phase motor). The sign of OFFSET determines the motor di-
rection.

QUADRATURE FUNCTION SERVICED
- POSITION_COUNT UPDATED

COMM FUNCTION
SERVICED - STATE 

CHANGE
DETECTED

COMM PINS CHANGE
- NEW STATE ACTIVE

COMM MATCH &
TRANSITION ON QUADRATURE 

SENSOR

COMM MATCH COMM MATCH

COMM FUNCTION
SERVICED

COMM FUNCTION
SERVICED

COMM MATCH

 UPDATE_PERIOD  UPDATE_PERIOD  UPDATE_PERIOD 

 TDMAX 

SENSOR X

COMM PINS
1 ›  N
TPU Programming Library MOTOROLA
TPUPN09/D 15



    
This offset causes the commutation state to change on the next periodic update of the COMM function,
which in turn causes the motor to move, provided sufficient power is being applied via the PWM func-
tion. As the motor turns, the POSITION_COUNT value is updated by the TPU input function and mon-
itored by the periodic servicing of the COMM function. As the motor aligns to the new commutation
state, the OFFSET value again causes the state number to advance, thus precipitating another state
change and further motor revolution. This continuous process, now without CPU intervention, keeps the
motor running in the required direction.

7.3 Motor Start-Up in Sensored Mode

Motor start-up is much simpler in sensored mode than in sensorless mode. The sensors on the motor
give an immediate indication of the rotor alignment. The HALLD function decodes the sensor inputs
along with a desired direction input from the CPU (in HALLD parameter RAM), writes a current state
number into the COMM master channel parameter RAM, then issues a link to the COMM master chan-
nel. If the state table in slave channel parameter RAM has been correctly initialized, the COMM function
will output the pin configuration that causes the motor to move in the desired direction when power is
applied to the phase drivers via the PWM function. To avoid generation of incorrect states, the HALLD
function must be initialized before the COMM function.

7.4 Using Comm with the HALLD Function

There are two reasons care must be taken when programming the COMM state table for use with the
HALLD function:  

1. The HALLD function performs a straight binary demultiplex of the sensor signals and a CPU
supplied direction input. The state table is not used sequentially as the motor rotates — care
must be taken to enter the state parameters in the correct order.

2. The HALLD function does not screen out invalid states. In a three-phase configuration, the
three sensor signals, along with the CPU supplied direction input, can decode any number be-
tween 0 and 15, but only twelve of these are valid. The other four values could result from noise
on the sensor lines. The user must provide a 16-entry state table in the COMM function, with
the four invalid states programmed to take an appropriate action (usually to disable all phase
drivers). The COMM master channel must be channel 13, so that there is sufficient contiguous
parameter RAM to hold the table. Similarly, a four phase motor requires a table size of eight
entries. In this case either channel 13 or 14 can be the COMM master channel. Figure 8 shows
a suitable table configuration for a three-phase motor. Commutation waveform diagrams for
both directions of motion can be deduced from the table. In the table contents, N is equal to the
bit value that causes the phase driver to be turned off.
 MOTOROLA TPU Programming Library
16 TPUPN09/D



Figure 8 State Table for Three-Phase Motor Using Sensored Mode and HALLD

7.5 Using Offset in Sensorless Mode

The OFFSET parameter has three basic uses:  

1. Enabling motion in a defined direction as described in 7.2 Motor Start-Up in Sensorless
Mode.

2. Compensating for commutation delays due to service time as described in 7.1 Commutation
Accuracy.

3. To advance and retard the commutation firing angles while the motor is running.

This last use allows the commutation states to be advanced by a variable amount at high motor speeds
for torque maintenance, and to be retarded to assist braking of the motor.

OFFSET can be used in all three ways in a single application by making it one of the primary outputs
of the CPU control algorithm, so that it is continually updated along with the duty cycle of the PWM func-
tion. 

7.6 Interrupts

A CPU interrupt request is generated by the COMM master channel on completion of every service of
the function. These interrupts can be enabled or disabled under CPU control via the channel interrupt
enable register (CIER). When interrupts are disabled, the bit in the channel interrupt status register
(CISR) corresponding to the COMM master channel is set on completion of every service of the func-
tion, allowing it to be polled by software.

The interrupt or interrupt status bit can be used to monitor completion of service after a host service
request has been issued by the CPU, or to synchronize other events in the system to the regular ser-
vicing of the COMM function.

HALL C HALL B HALL A DIRECTION STATE_NO COMM State Table

0 0 0 0 0 XXXXXXXX XX101100

0 0 0 1 1 XXXXXXXX XX011010

0 0 1 0 2 XXXXXXXX XX110100

0 0 1 1 3 XXXXXXXX XX011001

0 1 0 0 4 XXXXXXXX XXNNNNNN

0 1 0 1 5 XXXXXXXX XXNNNNNN

0 1 1 0 6 XXXXXXXX XX110010

0 1 1 1 7 XXXXXXXX XX101001

1 0 0 0 8 XXXXXXXX XX101001

1 0 0 1 9 XXXXXXXX XX110010

1 0 1 0 10 XXXXXXXX XXNNNNNN

1 0 1 1 11 XXXXXXXX XXNNNNNN

1 1 0 0 12 XXXXXXXX XX011001

1 1 0 1 13 XXXXXXXX XX110100

1 1 1 0 14 XXXXXXXX XX011010

1 1 1 1 15 XXXXXXXX XX101100
TPU Programming Library MOTOROLA
TPUPN09/D 17



8 Function Examples
Since the configuration of the COMM function must be viewed as part of an overall system, and many
parameters are dependent on the motor specification, no specific programming examples are given in
this note. However, guidelines on the calculation of possible system performance are required and two
examples follow. Refer to the documentation for each of the functions mentioned in the examples for
timing figures and more detail. Refer also to the latency section of the TPU reference manual. The per-
formance figures derived below are representative only — a detailed analysis is recommended for any
proposed implementation.

8.1 Example A —Sensorless Mode

8.1.1 Description

A three-phase brushless motor system is to be designed around the TPU. The commutation scheme is
sensorless, uses a 1000 count per revolution encoder, and employs the quadrature decoding capabili-
ties of the TPU fast quadrature decode (FQD) function. The NITC function is used to capture the index
pulse from the encoder. Two channels are used by the multichannel PWM (MCPWM) TPU function,
configured in edge-aligned mode to drive the motor with a 20-kHz PWM. Six channels are used by the
COMM function, to produce commutation drive signals that gate the PWM onto the motor phases. The
MCU is clocked at 20.97 MHz. Calculate the maximum motor rpm that can be supported by the TPU in
such a configuration and the accuracy of the commutation. A schematic of the system is shown in Fig-
ure 9. 
 MOTOROLA TPU Programming Library
18 TPUPN09/D



Figure 9 Example Brushless System

TPU 3PH COMM CONN

0 60 120 180 240 300 360 420 480 540 600 660 720

COMM

M

S1

S2

S3

S4

S5

FQD

A

B

A

B

MOTOR
O

U
TP

U
T 

IN
TE

R
FA

C
E 

& 
D

R
IV

ER
S

MCPWM

NITC

A

B
FQD

M

S1

S2

S3
COMM

IN
TE

R
FA

C
EFUNCTION

TPU

N S

NS

ROTOR

ASSY

ENCODER

OPTICALSENSOR A

SENSOR B

INDEX DETECT

S4

S5
TPU Programming Library MOTOROLA
TPUPN09/D 19



8.1.2 Analysis

Assuming that at high motor speeds the period of the quadrature signals is much smaller than the period
of either the PWM function or the update period of COMM, it is most efficient to assign high priority to
the FQD and NITC signals and medium priority to the other functions. This ensures that the quadrature
decode function is given the majority of the available TPU processing time slots. The NITC function
must also be assigned high priority to correctly capture the position count value when the index pulse
occurs, but it need only be active during motor start-up when the slow speed of the motor ensures that
there will be no TPU loading problems. Since it is more critical for the MCPWM function to be serviced
on time than the COMM function, MCPWM is assigned to lower channel numbers than COMM. This
ensures that although both functions have the same priority, MCPWM will be serviced first if both func-
tions request at the same time. A suitable channel assignment for the application follows.

There are six electrical states in the three-phase configuration and two electrical rotations for one phys-
ical rotation of the rotor. This implies that each commutation state is 1000/12 = 83.333 encoder counts
in length. The COMM function supports this fractional state length via the programmable state table;
since it is impossible to program a partial encoder count into the STATE_LENGTH field, the states can
be programmed to different lengths, for example:  

STATE_LENGTH0 83
STATE_LENGTH1 84
STATE_LENGTH2 83
STATE_LENGTH3 83
STATE_LENGTH4 84
STATE_LENGTH5 83

500 ∗  2 = 1000

Thus 1000 encoder counts now correspond to exactly two electrical revolutions. 

If a very high resolution encoder is used, so that STATE_LENGTH > 256, 12 state parameters are re-
quired, with pairs sharing the same PIN_CONFIG field. This makes it necessary to move the COMM
master channel to channel 13 or channel 14 to provide sufficient contiguous parameter RAM. The slave
channels would be 14 to 2 or 15 to 3 respectively. NO_OF_STATES would be programmed to 12.  

 

CHANNEL FUNCTION PRIORITY

0 NITC H

1 FQD H

2 FQD H

3 MCPWM master M

4 MCPWM slave M

5 COMM master M

6 COMM slave1 Disabled

7 COMM slave2 Disabled

8 COMM slave3 Disabled

9 COMM slave4 Disabled

10 COMM slave5 Disabled
 MOTOROLA TPU Programming Library
20 TPUPN09/D



8.1.3 Performance Calculation

8.1.3.1 Assumptions
1. No TPU functions are running on channels 11 to 15.
2. The NITC function is disabled after motor start up and thus does not figure in high speed anal-

ysis.
3. At high motor speed, FQD is used in the fast mode. 
4. The CPU does not issue TPU host service requests while the motor is running at high speed.
5. The RAM collision rate (RCR) between the TPU and CPU is very small (see reference manual).

RCR is not included in the calculations. If significant, RCR can have a major impact on TPU
performance. RCR can be reduced by avoiding situations such as tight software loops that poll
the TPU parameter RAM. If RCR is considered to be significant, the calculations below should
be repeated using a representative RCR and the procedures described in the TPU reference
manual.

8.1.3.2 Performance Data:

Worst case service time of FQD in fast mode = 26 CPU clocks
Worst case service time of FQD in normal mode = 46 CPU clocks
Worst case service time of NITC (single shot, no links) = 38 CPU clocks
Worst case service time of MCPWM master = 28 CPU clocks
Worst case service time of MCPWM slave = 26 CPU clocks
Worst case service time of COMM master = 74 + (14 ∗  NO_OF_PINS) = 158 CPU clocks
The above times include a time slot transition time (TST) of 10 clocks.

Calculation 1: Maximum Motor RPM

The first intuitive assumption is that the servicing of the FQD function is the most critical aspect of the
system — if an FQD edge is not serviced before the next signal edge occurs, then that edge will be lost
and the position count corrupted. Scheduler time slot assignment produces the following scheme:

HMHLHMHHMHLHMH...

Since there are no low priority channels, the low time slots are given to the highest priority requesting
channel at the time. Similarly, if no high priority channel is requesting at the start of a high priority time
slot then the slot is assigned to the next highest priority channel that is requesting.

The worst case for service of an FQD signal edge occurs when the transition occurs just as a high pri-
ority time slot is given away to a medium channel. If the time slot after that is a “real” medium priority,
the FQD transition must wait while two medium channels are serviced before it is serviced in the next
high or low priority time slot. The minimum allowable time between FQD transitions is therefore the
length of time taken to service these two medium channels and the time taken to service the FQD chan-
nel.

For worst case analysis, the two longest medium service times are used. If it is assumed that the second
medium channel is the last medium channel requesting at the time, then four additional CPU clocks
must be added to the calculation to allow for the resetting of the service grant latch (see reference man-
ual). Similarly, since FQD service must be complete before the next FQD transition, the high priority ser-
vice grant latch must be cleared after each FQD service, requiring the addition of four more clocks.

The two worst case medium services are the COMM function and the MCPWM master channel. The
minimum allowable time between FQD transitions is therefore:

158 + 28 + 26 + 8 = 220 CPU clocks

At 20.97 MHz, this is equivalent to a minimum period of 220 ∗  47.69 ns = 10.49 µs. 

In FQD fast mode there are four encoder counts for every serviced transition. 
TPU Programming Library MOTOROLA
TPUPN09/D 21



Minimum count period = 10.49/4 = 2.623 µs

At 1000 counts per revolution, this equates to a maximum motor speed of 22,875 rpm.

Since the critical factor is FQD servicing, this maximum motor rpm is proportional (up to a point) to the
resolution of the encoder. For example, if the resolution is doubled to 2000 counts per revolution, then
maximum motor speed would be reduced to approximately 11,400 rpm.

Calculation 2: Maximum Motor RPM With FQD in Normal Mode

Calculation 1 assumes that FQD is running in fast mode at high motor speeds. However, the function
must run in normal mode at lower speeds to ensure correct direction decoding and full accuracy. It is
therefore necessary to calculate the maximum motor speed that can be sustained in normal mode so
that the CPU can switch modes at the most efficient speed. 

In normal mode a transition on one of the FQD channels must be serviced before the next transition on
the other channel, to ensure correct direction decoding. The minimum time between transitions is there-
fore the maximum latency of an FQD service plus the service time of FQD in normal mode.

From calculation 1:

Minimum time between transitions = 158 + 28 + FQD service time + 8

= 158 + 28 + 46 + 8 = 240 CPU clocks

At 20.97 MHz, this is equivalent to a minimum period of 240 ∗  47.69 ns = 11.45 µs.

In normal mode this equates to the period of one count.

At 1000 counts per revolution, this equates to a maximum motor speed of 5240 rpm. 

Calculation 3: Maximum Commutation Angle Error

Having established the maximum motor speed, it is also useful to calculate the minimum sustainable
COMM function UPDATE_PERIOD, as a minimum value will result in the most accurate commutation.
Once this value is established, maximum switching angle error can be determined for a given motor
rpm. 

The minimum value for UPDATE_PERIOD is defined by the sum of worst case latency for COMM plus
worst case service time for COMM. Since in this example UPDATE_PERIOD is constant from motor
start-up, the service time of the NITC channel must also be taken into account. The worst case latency
for COMM therefore occurs when all other functions are requesting service as well, and the scheduler
is at the following point in its sequence:

HHMHLHM...

The first high priority time slot is given to the FQD function: 46 CPU clocks

The second high priority time slot is given to the NITC function: 38 + 4 CPU clocks

The first medium time slot is given to the MCPWM master channel: 28 CPU clocks

The third high priority time slot is given to the FQD function if another transition has occurred since the
service of the previous one (latency of last FQD transition is assumed to be maximum therefore another
transition could occur immediately after it was serviced): 46 + 4 CPU clocks.

The next time slot is a low priority, but since FQD has just been serviced and only one NITC transition
occurs per revolution, this time slot is given away to the medium priority MCPWM slave: 26 CPU clocks.
 MOTOROLA TPU Programming Library
22 TPUPN09/D



The next time slot is another high priority, but since a maximum of only 146 CPU clocks can have
elapsed since the last FQD transition, and since the minimum time between FQD transitions in normal
mode has been defined by calculation 2 to be 240 CPU clocks, there is no pending high priority channel
and the time slot is given to the medium priority COMM channel.

The worst case latency for COMM is therefore = 46 + 42 + 28 + 50 + 26 = 192 CPU clocks

The worst case service time of COMM is 158 + 4 (as this is the last medium channel) = 162 CPU clocks

The minimum update period of COMM is therefore 192 + 162 = 354 CPU clocks.

With TCR1 configured for divide by 4 operation, this results in a minimum UPDATE_PERIOD of 89.

As defined under 7.1 Commutation Accuracy the worst case switching delay is equivalent to 

-0, +(2 ∗  UPDATE_PERIOD).

This is equal to 712 clocks or 33.96 µs.

At 20,000 rpm this is equivalent to an angle error of 33.96/8.33 = 4.08 degrees.

Angle error is proportional to motor speed, so that at 2000 rpm it equals 0.408 degrees, and so on.  

Notes

1. Angle error can be improved considerably by varying UPDATE_PERIOD with motor speed and/
or using OFFSET to move the center point of the error (See 7.1 Commutation Accuracy). At
high motor rpm, NITC should not be active and FQD service time in fast mode is shorter, there-
fore possible minimum values for UPDATE_PERIOD are smaller and there is a smaller angle
error. Applying these two methods could reduce the worst case error to a quarter of the value
calculated above.

2. If the maximum obtainable rpm of the motor calculated above is too low, it can be increased by
using only three channels for the COMM function and adding external decode logic. The three
COMM channels are configured to output the required state number and the external logic de-
codes the state number into commutation drive signals. In this case, the worst case service time
of the COMM function would be 116 CPU clocks, resulting in a maximum motor rpm of approx-
imately 28,200 rpm.

8.2 Example B —Sensored Mode

8.2.1 Description

A three-phase brushless motor system is to be designed around the TPU. The commutation scheme
employed is sensored, using three Hall effect sensors decoded by the TPU Hall effect decode (FQD)
function. Two channels are used by the multichannel PWM (MCPWM) TPU function, configured in
edge-aligned mode to drive the motor with a 20-kHz PWM. Six channels are used by the COMM func-
tion to directly produce commutation drive signals that gate the PWM onto the motor phases. The MCU
is clocked at 16.78 MHz. A schematic of the system is shown in Figure 10. Calculate the maximum mo-
tor rpm that can be supported by the TPU in such a configuration.

8.2.2 Analysis

In sensored or link mode, each transition and service of the HALLD function causes a service of the
COMM master channel. Since the time taken to service these two functions directly affects commutation
accuracy, both functions must be assigned high priority in order to minimize this time. The MCPWM
function can be assigned a medium priority. Since a 16-entry state table is required in sensored mode,
the COMM master channel must be channel 13 or channel 14. A suitable channel assignment for the
application follows.
TPU Programming Library MOTOROLA
TPUPN09/D 23



There are six electrical states in the three-phase configuration and two electrical rotations for one phys-
ical rotation of the rotor. This implies that there are 12 sensor transitions in one rotation of the rotor.  

8.2.3 Performance Calculation

8.2.3.1 Assumptions
1. No TPU functions are running on channels 8 to 12.
2. The RAM collision rate (RCR) between the TPU and CPU is very small (see reference manual).

RCR is not included in the calculations. The CPU must spend a significant percentage of time
accessing parameter RAM for RCR to be an issue. If RCR is considered to be significant, the
calculations below should be repeated using a representative RCR and the procedures de-
scribed in the TPU reference manual.

8.2.3.2 Performance Data:

Worst case service time of MCPWM master = 28 CPU clocks
Worst case service time of MCPWM slave = 26 CPU clocks
Worst case service time of HALLD with three sensors = 80 CPU clocks
Worst case service time of COMM master = 34 + (14 ∗  NO_OF_PINS) = 118 CPU clocks
The above times include a time slot transition time (TST) of 10 clocks.

CHANNEL FUNCTION PRIORITY

3 HALLD H

4 HALLD H

5 HALLD H

6 MCPWM master M

7 MCPWM slave M

13 COMM master H

14 COMM slave1 Disabled

15 COMM slave2 Disabled

0 COMM slave3 Disabled

1 COMM slave4 Disabled

2 COMM slave5 Disabled
 MOTOROLA TPU Programming Library
24 TPUPN09/D



Figure 10 Example Hall Effect System

TPU HALL COMM CONN

0 60 120 180 240 300 360 420 480 540 600 660 720
HALLD

A

B

C

COMM

M

S1

S2

S3

S4

S5

MOTOR

O
U

TP
U

T 
IN

TE
R

FA
C

E 
& 

D
R

IV
ER

S

(MC)PWM

NITC
B

C

M

S1

S2

S3
COMM

IN
TE

R
FA

C
E

FUNCTION

TPU

N S

NS

ROTOR

ASSY

S4

S5

A

TPU Programming Library MOTOROLA
TPUPN09/D 25



8.2.3.3 Calculation: Maximum Motor RPM

To calculate the maximum attainable motor rpm, it is necessary to calculate the minimum allowable pe-
riod between HALLD sensor transitions that can result in all possible pending services being completed
on time. The time slot assignment of the scheduler produces the following scheme:

HMHLHMHHMHLHMH...

Since there are no low priority channels, the low time slots are given to the highest priority channel that
is requesting service. Similarly, if no high priority channel is requesting service at the start of a high pri-
ority time slot, the slot is assigned to the next highest priority channel that is requesting service.

Worst case for the service of a HALLD signal edge occurs when a transition occurs just as a high priority
time slot is given away to a medium priority channel. If the time slot after that is a “real” medium priority,
the HALLD transition must wait while two medium priority channels are serviced before it is serviced, in
the next high or low priority time slot. The HALLD function generates a link request to the COMM master
channel after it is serviced, and the COMM master must also be serviced before the next HALLD tran-
sition.

The minimum allowable time between HALLD transitions is therefore the length of time taken to service
the two medium priority channels, plus the time taken to service COMM and HALLD. There are also two
resets of the service grant latch during this time, because all medium priority channels and all high pri-
ority channels are serviced during this time — an extra eight CPU clocks must be added to the calcu-
lation (see reference manual). The two medium priority services are the master and slave MCPWM
channels.

The minimum allowable time between HALLD transition is therefore:  

80 + 118 + 28 + 26 + 8 = 260 CPU clocks

At 16.78 MHz, this is equivalent to a minimum period of 260 ∗  59.6 ns = 15.5 µs.

This equates to a maximum motor speed of 60 ∗  1/(15.5 µs ∗  12) = 322,580 rpm.

This is the maximum possible speed, but it results in a lag of a full commutation state, because the state
corresponding to a particular sensor configuration is just established as the next sensor transition oc-
curs. For this reason, maximum practical motor speed is less than this figure.

9 Function Algorithm
The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPN00/D) for detailed instructions regarding downloading and compiling microcode. 

The commutation function consists of three states, which operate as described below. For clarity, ref-
erence is made to internal channel flag0 in the following descriptions. This internal TPU control bit is not
available to the user. 
 MOTOROLA TPU Programming Library
26 TPUPN09/D



9.1 State 1: FORCE_COMM

This state is entered as a result of an HSR type %10 or a link request with internal channel flag0 = 0
(sensored mode after initialization). This state forces the pin configuration obtained from the state pa-
rameter corresponding to the current value of STATE_NO to be output on the COMM function pins as
follows:

TEMP = TCR1
Disable servicing of match events
If host sequence bit 0 (HSQ0) is set

Clear channel flag0
Else 

Set channel flag0
Get STATE_N from slave channel parameter RAM using STATE_NO as table address.
Set up COMM channels to output the state defined by the PIN CONFIG field of STATE_N when 

the next match on each channel occurs
Schedule a match on each COMM channel for time TEMP + UPDATE_PERIOD
Generate a CPU interrupt request from the master COMM channel
End

When the scheduled match occurs, the new pin configuration will appear on the appropriate COMM
channel pins.

9.1.1 State 2: UPDATE_COMM

This state is entered as a result of an HSR type %11 or a link request with internal channel flag0 = 1
(sensorless link mode after initialization). This state tests the remote position counter and OFFSET
against the current state boundaries and updates the commutation state if either boundary has been
crossed. The state operates as follows:

TEMP = TCR1
Goto TEST_STATE
TPU Programming Library MOTOROLA
TPUPN09/D 27



9.1.2 State 3: MATCH_UPDATE_COMM

This state is entered as a result of a match service request in sensorless match update mode. This state
tests the remote position counter and OFFSET against the current state boundaries and updates the
commutation state if either boundary has been crossed. The state operates as follows:

TEMP = last match time
TEST_STATE:
Get POSITION_COUNT via COUNTER_ADDR
TEMP2 = POSITION_COUNT + OFFSET
If TEMP2 < LOWER then

STATE_NO = STATE_NO – 1
If STATE_NO negative then STATE_NO = NO_OF_STATES

Get STATE_N from slave channel parameter RAM using STATE_NO as table address
UPPER = LOWER
LOWER = LOWER – STATE_LENGTH

Else if TEMP2 ≥ UPPER then
STATE_NO = STATE_NO + 1
If STATE_NO > NO_OF_STATES then STATE_NO = 0

Get STATE_N from slave channel parameter RAM using STATE_NO as table address
LOWER = UPPER
UPPER = UPPER + STATE_LENGTH

Endif
If host sequence bit 1 is clear (match mode) then 

Enable servicing of match events
Else

Disable servicing of match events (link mode)
If host sequence bit 0 (HSQ0) is set

Clear channel flag0
Else

set channel flag0
Endif
Get STATE_N from slave channel parameter RAM using STATE_NO as table address
Set up COMM channels to output the state defined by the PIN CONFIG field of STATE_N when 

the next match on each channel occurs
Schedule a match on each COMM channel for time TEMP + UPDATE_PERIOD
Generate a CPU interrupt request from the master COMM channel
End

When the scheduled match occurs, the new pin configuration will appear on the appropriate COMM
channel pins.
 MOTOROLA TPU Programming Library
28 TPUPN09/D



NOTES
TPU Programming Library MOTOROLA
TPUPN09/D 29



NOTES
 MOTOROLA TPU Programming Library
30 TPUPN09/D



NOTES
TPU Programming Library MOTOROLA
TPUPN09/D 31



Motorola uitability
of its pro  any and
all liabilit  can and
do vary i ola does
not conv intended
for surgi  create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,  
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.
M

 reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages.  "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications.  All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.  Motor
ey any license under its patent rights nor the rights of others.  Motorola products are not designed, intended, or authorized for use as components in systems 
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part.  M O T O R O L A   and !  are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.


	1 Functional Overview
	2 Detailed Description
	Figure 1 Typical Hall Effect Setup and Waveforms
	Figure 2 Typical Sensorless Setup and Waveforms
	2.1 All Modes

	3 Function Code Size
	4 Function Parameters
	Figure 3 TPU Channel Parameter RAM CPU Address Map...
	Figure 4 Comm Function Parameter RAM Assignment
	4.1 COUNTER_ADDR
	4.2 NO_OF_PINS
	4.3 STATE_NO
	4.4 NO_OF_STATES
	4.5 OFFSET
	4.6 UPDATE_PERIOD
	4.7 UPPER
	4.8 LOWER
	4.9 USTATE_0...STATE_N

	5 Host Interface to Function
	Figure 5 TPU Address Map

	6 Function Configuration
	6.1 Sensored Mode (HSQ[1:0] = %11)
	6.2 Sensorless Link Update Mode (HSQ[1:0] = %10)
	6.3 Sensorless Match Update Mode (HSQ[1:0] = %00 o...

	7 Performance and Use of Function
	Table 1 Commutation Function — State Timing
	7.1 Commutation Accuracy
	7.1.1 Sensored Mode
	Figure 6 Sensored Configuration

	7.1.2 Sensorless Mode
	Figure 7 Sensorless Configuration


	7.2 Motor Start-Up in Sensorless Mode
	7.3 Motor Start-Up in Sensored Mode
	7.4 Using Comm with the HALLD Function
	Figure 8 State Table for Three-Phase Motor Using S...

	7.5 Using Offset in Sensorless Mode
	7.6 Interrupts

	8 Function Examples
	8.1 Example A —Sensorless Mode
	8.1.1 Description
	Figure 9 Example Brushless System

	8.1.2 Analysis
	8.1.3 Performance Calculation
	8.1.3.1 Assumptions
	8.1.3.2 Performance Data:


	8.2 Example B —Sensored Mode
	8.2.1 Description
	8.2.2 Analysis
	8.2.3 Performance Calculation
	8.2.3.1 Assumptions
	8.2.3.2 Performance Data:
	Figure 10 Example Hall Effect System
	8.2.3.3 Calculation: Maximum Motor RPM



	9 Function Algorithm
	9.1 State 1: FORCE_COMM
	9.1.1 State 2: Update_comm
	9.1.2 State 3: MATCH_UPDATE_COMM



