Motorola Semiconductor Engineering Bulletin

EB276

Using the ITC Function on the Time Processor Unit A

By Sharon Darley Austin, Texas

Introduction

The ITC function counts input transitions and time stamps the last two. The user specifies the number of transitions to be counted via the parameter MAX_COUNT. Each time the TPU (time processor unit) counts an input transition, it increments the parameter TRANS_COUNT and compares it with MAX_COUNT.

The ITC function has two main modes of operation:

- Continuous mode
- Single-shot mode

In continuous mode, the ITC function will repeatedly count the number of transitions programmed in MAX_COUNT. Each time TRANS_COUNT reaches the value in MAX_COUNT, TRANS_COUNT resets to 0. If BANK_ADDRESS points to a valid parameter address, then the value in the high byte of that address is incremented by 1. If interrupts are enabled, then an interrupt request will be made. Finally, if the continual with links mode has been selected with the host sequence field bits, then a link will be generated to the channel specified by START_LINK_CHANNEL.

The single-shot mode works exactly the same way as the continuous mode except that the ITC function counts the number of transitions

specified in MAX_COUNT only once, and then it ignores all further transitions.

The ITC function is not designed to work as a free-running counter. It will always count at least one transition before generating an interrupt, even if the value in MAX_COUNT is 0.

Example Program

This program uses single-shot with links mode to count input pulses and generate a link when MAX_COUNT reaches a specified value. In single-shot mode with links, the ITC function counts the number of transitions programmed in MAX_COUNT once. When TRANS_COUNT reaches the value in MAX_COUNT, a link is generated to the channel specified by START_LINK_CHANNEL, and the value in the high byte of the parameter pointed to by BANK_ADDRESS is incremented by 1. In this example, BANK_ADDRESS points to an unimplemented RAM location so that it does not affect operation of other channels.

In this program, the ITC function on channel 1 counts input pulses from the PWM function on channel 0. When the ITC function counts seven pulses, it generates a link to channel 2, which is set up to run the SPWM function. This simply means that channel 1 issues a service request to channel 2. To see when the link is generated, the SPWM square wave is programmed to be out of phase with the PWM square wave. The rising edge of the SPWM wave will begin at the falling edge of the PWM wave.

Channel 0 is set up to run the PWM function, channel 1 is set up to run the ITC function, and channel 2 is set up to run the SPWM function.

Initialization TPUMCR equ \$fffe00 TICR equ \$fffe08 CIER equ \$fffe0a	Program Code for CPU32-Based Microcontrollers	
TICR equ \$fffe08	Initializa	
	TPUMCR	
CIER equ \$fffe0a	TICR	
	CIER	
CFSR0 equ \$fffe0c	CFSR0	
CFSR1 equ \$fffe0e	CFSR1	
CFSR2 equ \$fffe10	CFSR2	
CFSR3 equ \$fffe12	CFSR3	
HSQR0 equ \$fffe14	HSQR0	
HSQR1 equ \$fffe16	HSQR1	
HSRR0 equ \$fffe18	HSRR0	
HSRR1 equ \$fffe1a	HSRR1	
CPRO equ \$fffe1c	CPR0	
CPR1 equ \$fffe1e	CPR1	
PRAM0_0 equ \$ffff00	PRAM0_0	
PRAM0_1 equ \$ffff02	PRAM0_1	
PRAM0_2 equ \$ffff04	PRAM0_2	
PRAM0_3 equ \$ffff06	PRAM0_3	
PRAM0_4 equ \$ffff08	PRAM0_4	

	- T	
PRAM1_4	equ	\$ffff18
PRAM1_5	equ	\$ffff1A
PRAM1_6	equ	\$ffff1C
PRAM1_7	equ	\$ffff1E
PRAM2_0	equ	\$ffff20
PRAM2_1	equ	\$ffff22
PRAM2_2	equ	\$ffff24
PRAM2_3	equ	\$ffff26
PRAM2_4	equ	\$ffff28
PRAM2_5	equ	\$ffff2A
PRAM2_6	equ	\$ffff2C
PRAM2_7	equ	\$ffff2E
PRAM4_0	equ	\$ffff40
PRAM4_1	equ	\$ffff42
PRAM4_2	equ	\$ffff44
PRAM4_3	equ	\$ffff46
PRAM4_4	equ	\$ffff48
PRAM4_5	equ	\$ffff4a
PRAM5_0	equ	\$ffff50
PRAM5_1	equ	\$ffff52

equ

equ

equ

equ

equ

equ

equ

\$ffff0A

\$ffff0C

\$ffff0E

\$ffff10

\$ffff12

\$ffff14

\$ffff16

EB276

PRAM0_5

PRAM0_6

PRAM0_7

PRAM1_0

PRAM1_1

PRAM1_2

PRAM1_3

PRAM5_2	equ	\$ffff54		
PRAM5_3	equ	\$ffff56		
PRAM5_4	equ	\$ffff58		
PRAM5_5	equ	\$ffff5a		
or	g	\$4000	;	begin at memory location \$4000
mc	ve.w	#\$07A9,(CFSR3).L	;	Channel Function Select Field
			;	(channel numbers may
			;	vary for different mask sets)
mc	ve.w	#\$00FF,(CPR1).L	;	Channel Priority Field, high priority
mc	ve.w	#\$0008,(HSQR1).L	;	ITC mode = single shot with links
			;	SPWM = mode 0

PWM InitializationThis PWM wave will have a pulse period of \$1000 and a pulse hightimefor Channel 0of \$500. The ITC function on channel 1 will count the rising edges.

move.w	#\$0092,(PRAM0_0).L	;	Channel Control, use TCR1
move.w	#\$0500,(PRAM0_2).L	;	pulse hightime = \$500
move.w	#\$1000,(PRAM0_3).L	;	pulse period = \$1000

ITC InitializationIn this example, the ITC function only links to channel 2. Thus,for Channel 1START_LINK_CHANNEL = 2, and LINK_CHANNEL_COUNT = 1. Asrequired, LINK_CHANNEL_COUNT is a value greater than zero andless than or equal to eight.

Since this program does not need to increment a parameter in another memory location when the number of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an unimplemented memory location.

move.w	#\$0007,(PRAM1_0).L	;	Channel control, detect rising edge,
		;	use TCR1
move.w	#\$210E,(PRAM1_1).L	;	$START_LINK_CHANNEL = 2,$
		;	$LINK_CHANNEL_COUNT = 1$,
		;	BANK_ADDRESS points to unimplemented
		;	RAM
move.w	#\$0007,(PRAM1_2).L	;	$MAX_COUNT = 7$

SPWM InitializationThe SPWM is set up in mode 0 so that it can receive links from another
channel 2
in Mode 0for Channel 2
in Mode 0The SPWM is set up in mode 0 so that it can receive links from another
channel. It is initialized with a pulse hightime of \$500 and a period of
\$1000. REF_ADDR1 points to a reference value to which DELAY and
PERIOD are added to form the rising transition time. Here, it points to
FINAL_TRANS_TIME on the ITC channel. FINAL_TRANS_TIME
contains the TCR time of the final transition when MAX_COUNT is
reached.

	move.w move.w move.w	#\$92,(PRAM2_0).L #\$500,(PRAM2_2).L #\$1000,(PRAM2_3).L #\$0018,(PRAM2_4).L #\$0500,(PRAM2_5).L	; ; ;	Channel Control HIGH_TIME = \$500 PERIOD = \$1000 REF_ADDR1 = \$18 DELAY = \$500
Service	Initia	lization Request		
finish		#\$0026,(HSRR1).L finish	;	Initialization for ch 0, 1, 2

Program CodeThis program was assembled using the IASM16 assembler availablefor CPU16-Basedwith the ICD16 in-circuit debugger from P&E Microcomputer Systems.MicrocontrollersMicrocomputer Systems.

Initialization				
TPUMCR	equ	\$fffe00		
TICR	equ	\$fffe08		
CIER	equ	\$fffe0a		
CFSR0	equ	\$fffe0c		
CFSR1	equ	\$fffe0e		
CFSR2	equ	\$fffel0		
CFSR3	equ	\$fffel2		
HSQR0	equ	\$fffel4		
HSQR1	equ	\$fffel6		
HSRR0	equ	\$fffel8		
HSRR1	equ	\$fffela		
CPR0	equ	\$fffelc		
CPR1	equ	\$fffele		
PRAM0_0	equ	\$ffff00		
PRAM0_1	equ	\$ffff02		
PRAM0_2	equ	\$ffff04		
PRAM0_3	equ	\$ffff06		
PRAM0_4	equ	\$ffff08		
PRAM0_5	equ	\$ffff0A		
PRAM0_6	equ	\$ffff0C		
PRAM0_7	equ	\$ffff0E		
PRAM1_0	equ	\$ffff10		
PRAM1_1	equ	\$ffff12		

EB276

Engineering Bulletin

PRAM1_2	equ	\$ffff14
PRAM1_3	equ	\$ffff16
PRAM1_4	equ	\$ffff18
PRAM1_5	equ	\$fffflA
PRAM1_6	equ	\$fffflC
PRAM1_7	equ	\$fffflE
PRAM2_0	equ	\$ffff20
PRAM2_1	equ	\$ffff22
PRAM2_2	equ	\$ffff24
PRAM2_3	equ	\$ffff26
PRAM2_4	equ	\$ffff28
PRAM2_5	equ	\$ffff2A
PRAM2_6	equ	\$ffff2C
PRAM2_7	equ	\$ffff2E

**** MAIN PROGRAM ****

org	\$400		
ldab	#\$0F	; use bank \$0f for parameter RAM	
tbek			
ldd	#\$07A9		
std	CFSR3	; Channel Function Select Field (Note:	
		; function numbers	
ldd	#\$00FF	; may vary for different mask sets)	
std	CPR1	; Channel Priority Field, high priority	
ldd	#\$0008		
std	HSQR1	; ITC mode = single with links, SPWM=mode()

PWM InitializationThis PWM wave will have a pulse period of \$1000 and a pulse hightimefor Channel 0of \$500. The ITC function on channel 1 will count the rising edges.

ldd	#\$0092	
std	PRAM0_0	; Channel Control, use TCR1
ldd	#\$0500	
std	PRAM0_2	; pulse hightime = 500
ldd	#\$1000	
std	PRAM0_3	; pulse period = 1000

ITC Initialization In this example, the ITC function only links to channel 2. Thus, for Channel 1 START_LINK_CHANNEL = 2, and LINK_CHANNEL_COUNT = 1. As required, LINK_CHANNEL_COUNT is a value greater than zero and less than or equal to eight. Since this program does not need to increment a parameter in another memory location when the number of transitions specified in MAX_COUNT has been counted, BANK_ADDRESS points to an unimplemented memory location.

ldd	#\$0007	
std	PRAM1_0	; Channel control, detect rising edge, use
		; TCR1
ldd	#\$210E	
std	PRAM1_1	; START_LINK_CHANNEL = 2,
		; LINK_CHANNEL_COUNT = 1,
		; BANK_ADDRESS points to unimplemented RAM
ldd	#\$0007	
std	PRAM1_2	; MAX_COUNT = 7

SPWM Initialization The SPWM is set up in mode 0 so that it can receive links from another for Channel 2 channel. It is initialized with a pulse hightime of \$500 and a period of in Mode 0 \$1000. REF ADDR1 points to a reference value to which DELAY and PERIOD are added to form the rising transition time. Here, it points to FINAL_TRANS_TIME on the ITC channel. FINAL_TRANS_TIME contains the TCR time of the final transition when MAX COUNT is reached. This waveform will be delayed from the PWM waveform. Its rising edge will occur at the falling edge of PWM.

ld ld		#\$92 #\$500		
st		PRAM2_2	;	HIGH_TIME = \$500
ld	.d	#\$1000		
st	d	PRAM2_3	;	PERIOD = \$1000
ld	d	#\$0018		
st	d	PRAM2_4	;	REF_ADDR1=\$18
ld	d	#\$0500		
st	d	PRAM2_5	;	DELAY = \$500
Service I	nitia	lization Request		
ld	d	#\$0026		
st	d	HSRR1		; Initialization for ch 0, 1, 2

finish bra

finish

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (**A**) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298

Mfax[™], Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1999